AVHRR and GOES Visible and Near-Infrared Sensors and the Development of a Consistent Long-Term Cloud and Clear-Sky Radiation Property Dataset

Patrick Minnis, Kris Bedka, Dave Doelling, Qing Trepte
Rabindra Palikonda, Konstantin Khlopenkov, Ben
Scarino, Daniel Morstad
Climate Sciences Branch
NASA Langley Research Center
757-864-5671; p.minnis@nasa.gov

Jack Xiong, NASA GSFC

Fred Wu, NOAA NESDIS

Overview

Goals

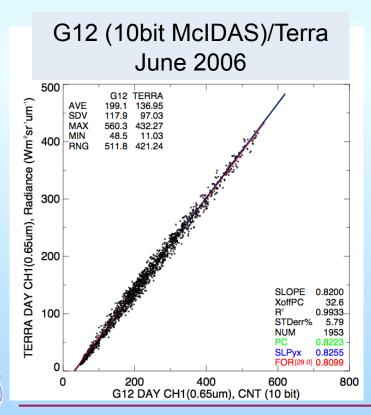
- Calibrate AVHRR 0.64, 0.87, and 1.6-µm channels
- Calibrate GOES & SMS imager 0.65-µm channels
- Generate CERES-like cloud climatology from AVHRR record

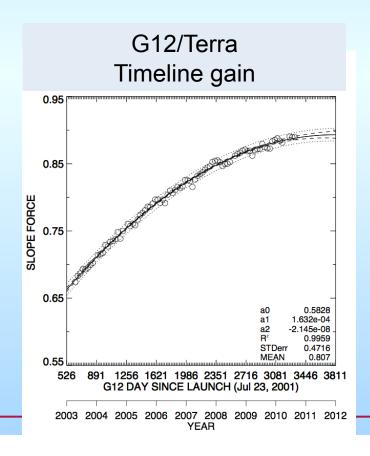
Source Data

- AVHRR 1, 2, & 3: 1978 present
- SMS-1 & 2; GOES-1 thru present
- SCHIAMACHY spectral data (2004-2009)

Deliverables

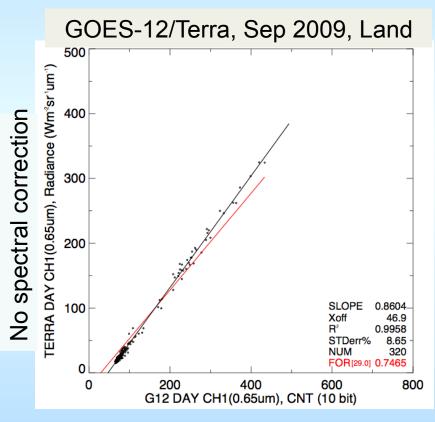
- Calibrated 0.63 & 0.86-µm radiances (calibration coefficients)
- Cloud temperature, height, optical depth, effective particle size, water path, phase; surface skin temperature, spectral albedo
- ECVs addressed: cloud properties, radiation budget
- Current/expected user communities: GEWEX, GCM community, energy, aviation

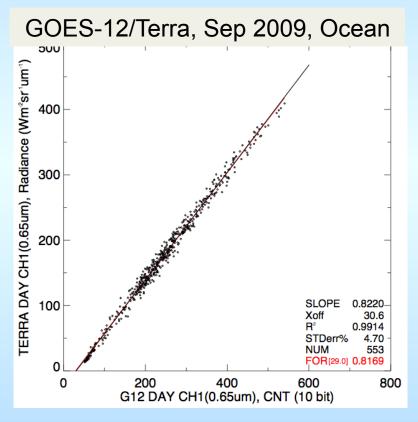

Solar Channel Calibration Approach


- Use Aqua-MODIS as the absolute calibration reference
 - Aqua more stable
 - Better characterized
 - Not based on the absolute calibration of Aqua of Terra
- Develop spectral corrections for each satellite using SCIAMACHY
 - Use ratios for cross-calibration (Doelling et al., GSRL, 2011)
- Perform AVHRR DCC and desert calibration
 - NOAA orbits degrade over time, Accuracy limited to SZA < 55°
 - Develop DCC BRDF corrections using VIRS
- Use Geostationary satellites as calibration references
 - Have a set image scheduling, always have data w/ SZA < 55°
- Calibrate each GEO independently
 - 2000-2008 GEOs use MODIS/GEO ray-matching, DCC and deserts
 - 1985-1999 GEOs are based on DCC and desert only, tied to 2000+
- Transfer all simultaneous GEO calibrations to a given AVHRR
 - All GEO calibrations should yield same AVHRR sensor degradation
 - AVHHR DCC-> trend
 mean of GEO cross-calibrations-> gain
- Compare with ISCCP & other published calibration coefficients

Ray-matching to reference sensor

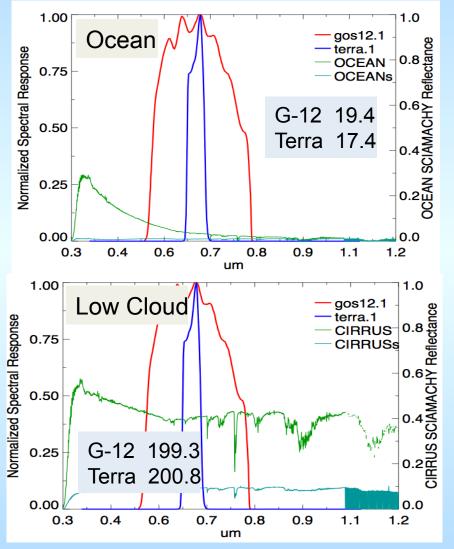
- Ray-match coincident GEO counts, radiances and MODIS radiances averaged over a 50² km ocean grid near the sub-satellite point (±15°lat by ±20°lon area)
- Use GEO provided space count offset
- Perform monthly regressions to derive monthly gains
- Compute timeline trends from monthly gains

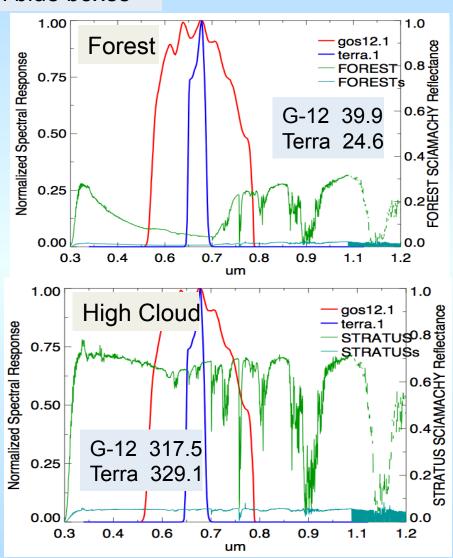




Ray-matching spectral adjustment

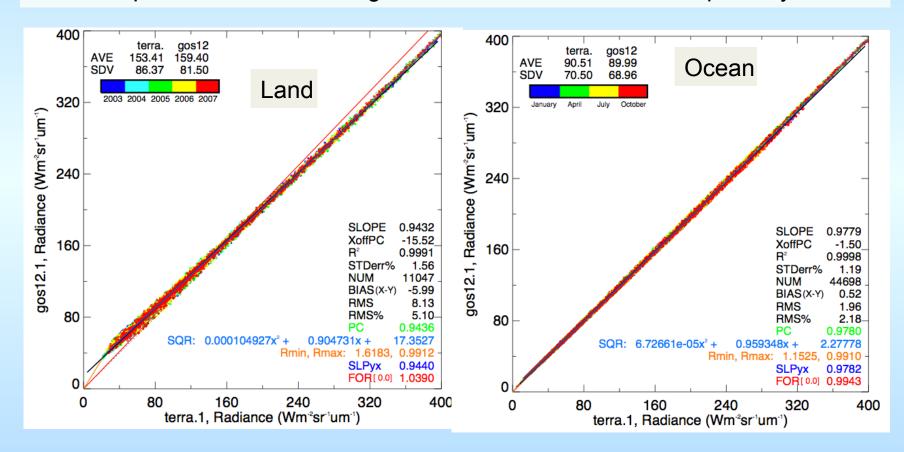
- Use SCIAMACHY-derived pseudo GOES-12 and Aqua-MODIS radiances to adjust GOES-12 radiance as if it had Terra-MODIS spectral response
- Validate by adjusting GOES-12 radiances to Terra-MODIS over ocean and land:
 the gains should converge

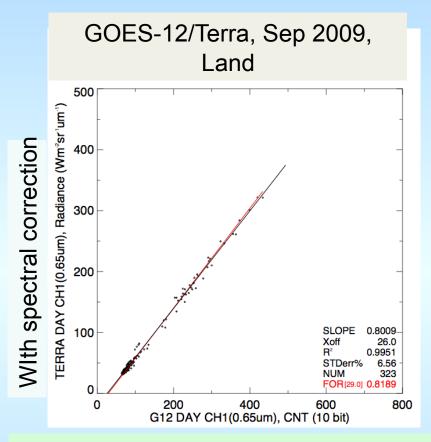


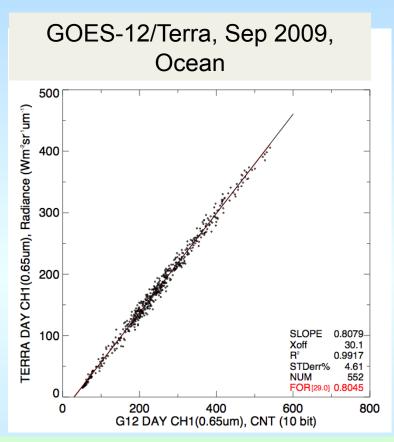


- Gain difference is .8169 for ocean and 0.7465 for land, a 9.4% difference
- Space count is 30.6 for ocean and 46.9 for land, a 16 count difference

SCIAMACHY reflectances

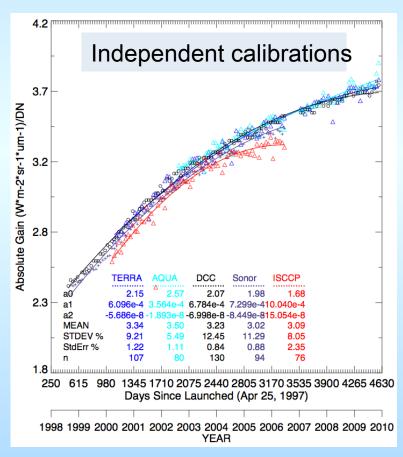

SCIAMACHY pseudo radiances in blue boxes

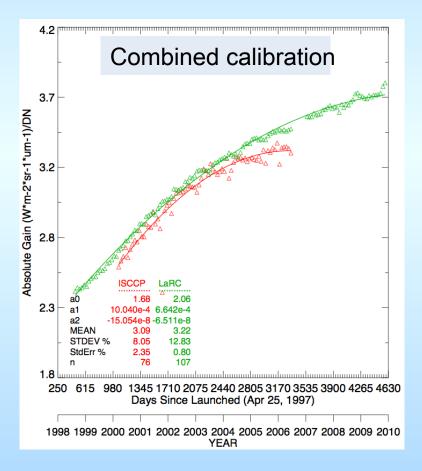



SCIAMACHY Pseudo Radiances

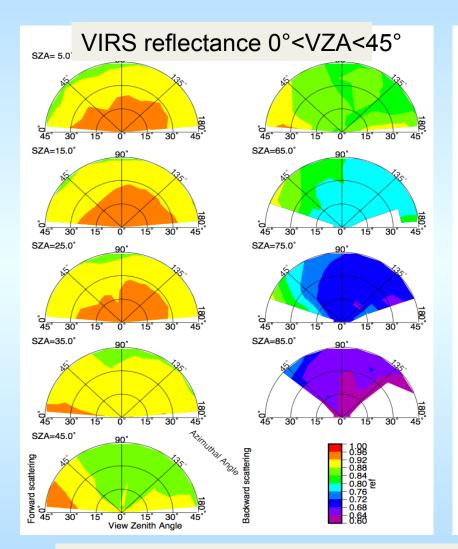
- Use all SCIAMACHY footprint that fall within the GEO/LEO equatorial domain
- Derive spectral correction using cubic fit for land and ocean separately

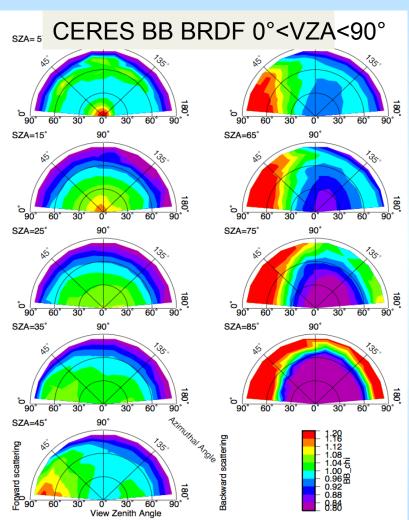
Ray-matching spectral adjustment

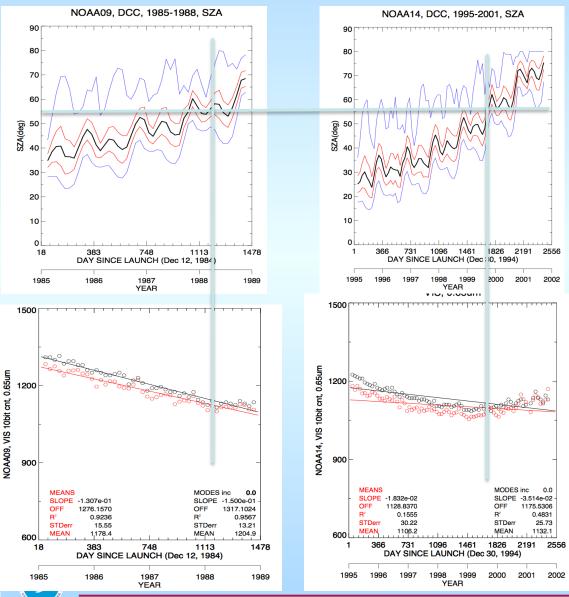



- Gain difference is 0.805 for ocean and 0.819 for land, ~1.7% difference (9.4%)
- Space count is 30.1 for ocean and 26.0 for land, ~ 4 count difference (16)
- Only use ocean geo-type for ray-matching, since spectral correction is minimal

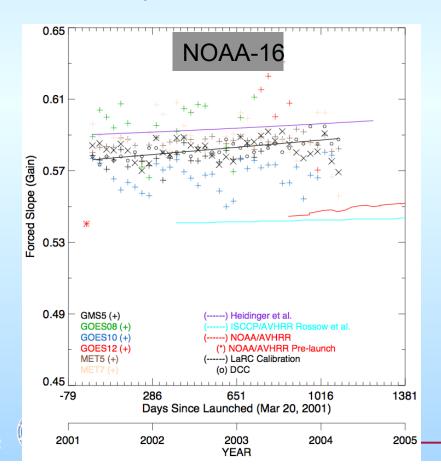
Multi-method GOES-10 calibration

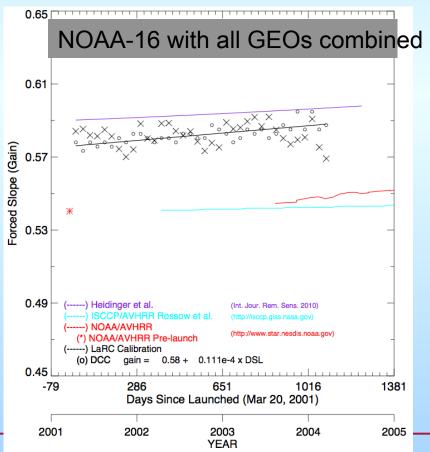

- All methods GOES-12/Terra, GOES-12/Aqua ray-matching, desert and DCC calibration are independent referenced to Aqua-MODIS
- Combine methods by weighting inverse of the standard error of the regression



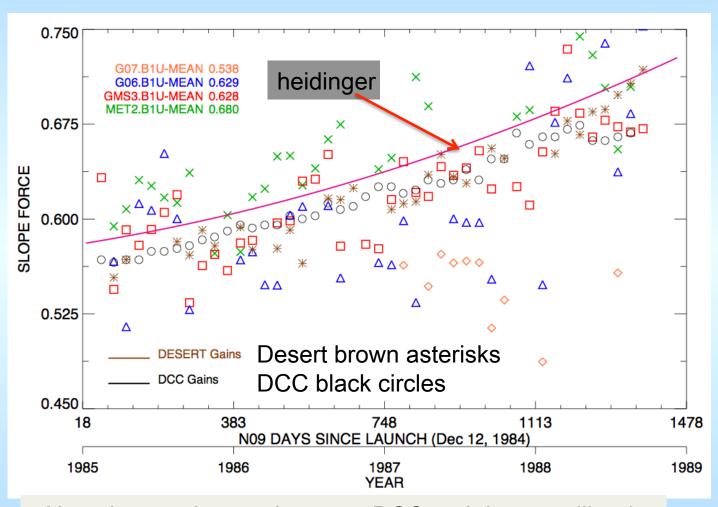

Construct visible DCC ADM models

- Work in progress: Preliminary VIRS models to be tested
- Following results use CERES BDRF


AVHRR DCC calibration

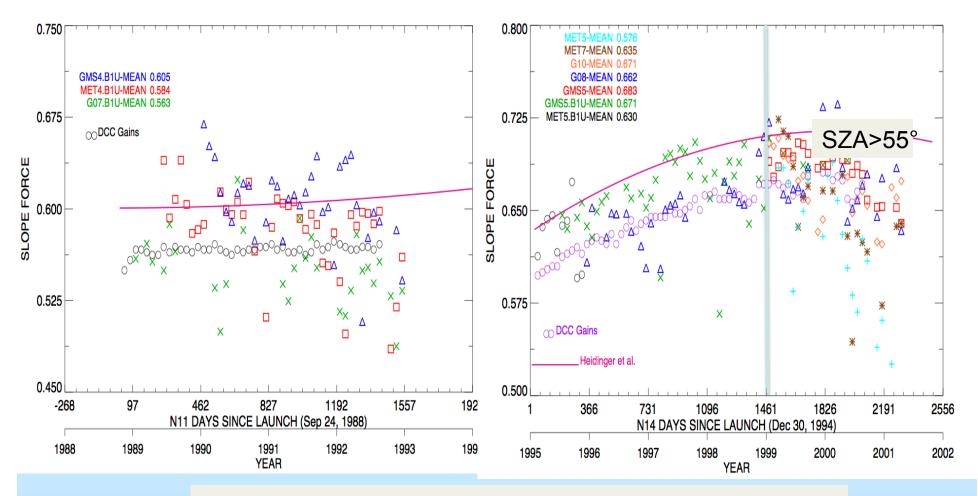


- Currently use a threshold of SZA=55°
- CERES BDRF is broadband and may have more absorption then the visible window channel


NOAA calibration method

- Use DCC and desert to calibrate NOAA-AVHRR
 - Methods hindered by degradation of NOAA orbits
- Use GEO as independent references
 - Ray-match all simultaneous GEOs with a given NOAA AVHRR
 - Compare to known calibration trends

NOAA-9 AVHRR calibration



- Note the consistency between DCC and desert calibration
- Preliminary desert result using VIRS model, DCC to as SZA<55°
- Some GEOs need further investigation

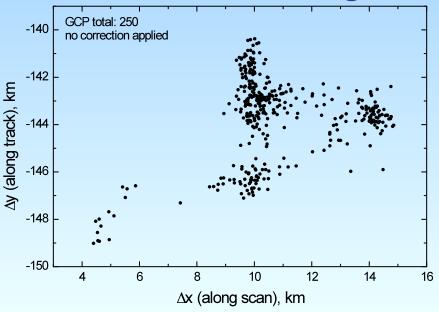
Preliminary N11 and N14 Channel-1 Calibrations

N11 vs MET3.B1U/G07.B1U/MET4.B1U/GMS4.B1U/ With SBAF-Stage 2 OCEAN ONLY N14 vs MET5.B1U/GMS5.B1U/GMS5/G08/G10/MET7/MET5/ With SBAF-Stage 2 OCEAN ONLY

- LaRC ~3% lower than Heidinger in absolute calibration
- Similar temporal trends as Heidinger
- Average of all GEO/AVHRR gains is similar to DCC trends

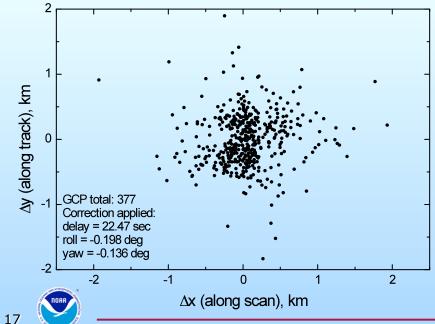
Cloud Analysis Approach

- Calibrate sensors
- Re-navigate all sensors using known locations
- Destripe 3.75-µm channels when necessary
- Adapt CERES Ed4 mask to AVHRR (0.65, 0.86, 3.7, 11, 12 μm, 4 km)
 - Test & tune mask using MODIS (1 km)
 - CERES Ed4 uses AVHRR channels + 1.38, 2.1, 8.5, 13.3 μm
 - Apply to NOAA-18, compare with Aqua MODIS & CALIPSO
 - Make changes as necessary, 1-hr time difference between A-Train & N18
 - Apply to AVHRR back to NOAA-5 (1978-2010)
- Adapt CERES Ed4 Cloud Property Retrieval System to AVHRR
 - Adapt algorithm to limited AVHRR channels
 - Test & refine using MODIS and retest using NOAA-18
 - Test all months
 - Apply to AVHRR back to NOAA-5 (1978-2010)

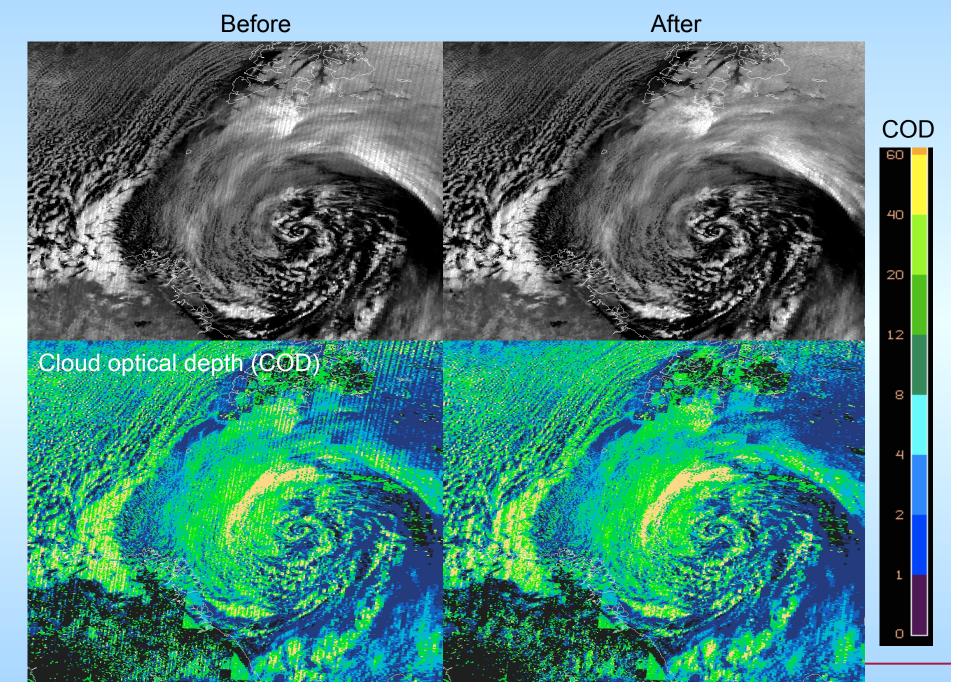


Re-Navigation Example

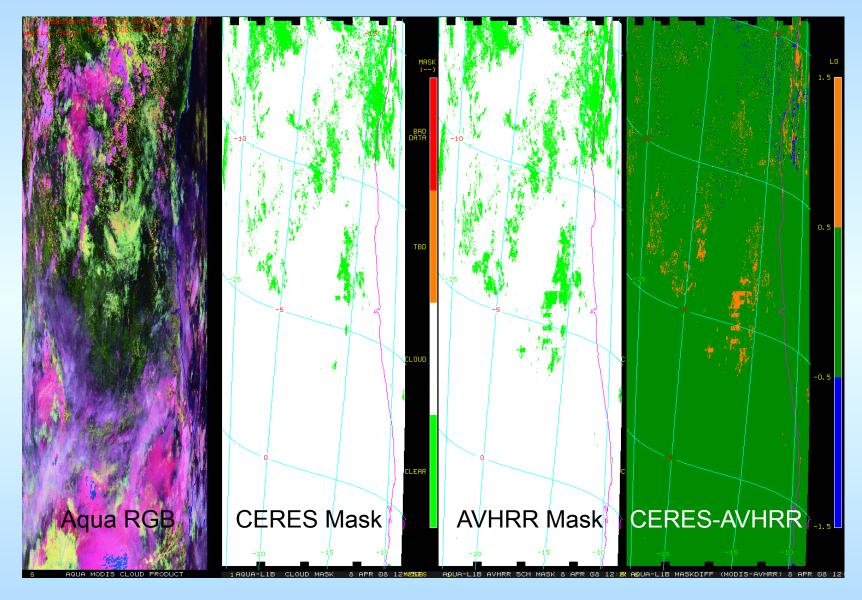
NOAA-9 1 Dec 1986, 19:50 UTC


After Before

Navigation Correction

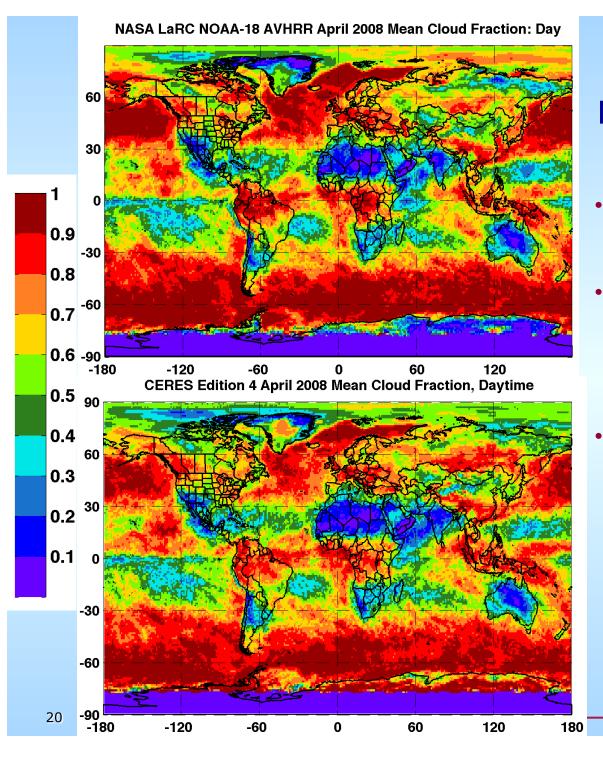

AVHRR Channel 2 GAC image displacement relative to a reference MODIS cloud-free composite image. Displacements were calculated by means of image matching at 250 pre-selected cloud-free ground control points. Different groups of points correspond to different cloud-free areas of the AVHRR granule.

NOAA-9 1986-DEC-01, 19:50 UTC.

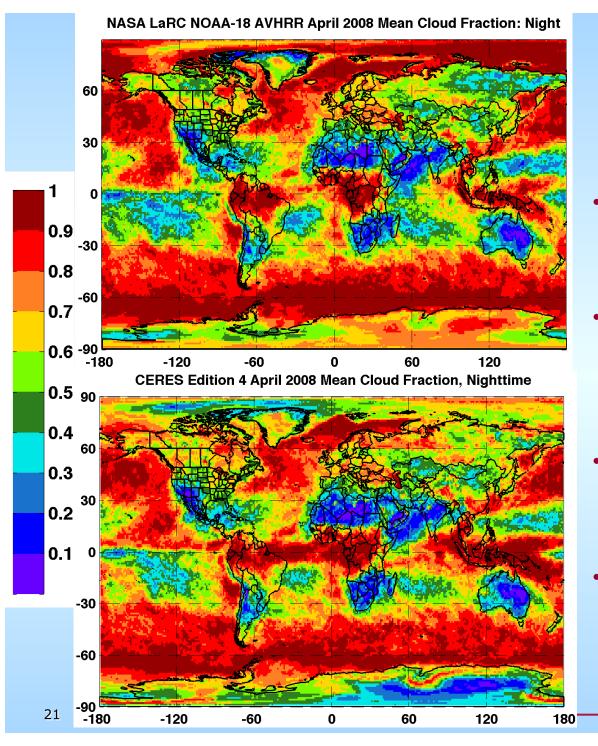


Same set of displacements after the 6iteration navigation correction process which includes the ortho-correction. The displacement residuals are well below the GAC pixel size of 3x5 km.

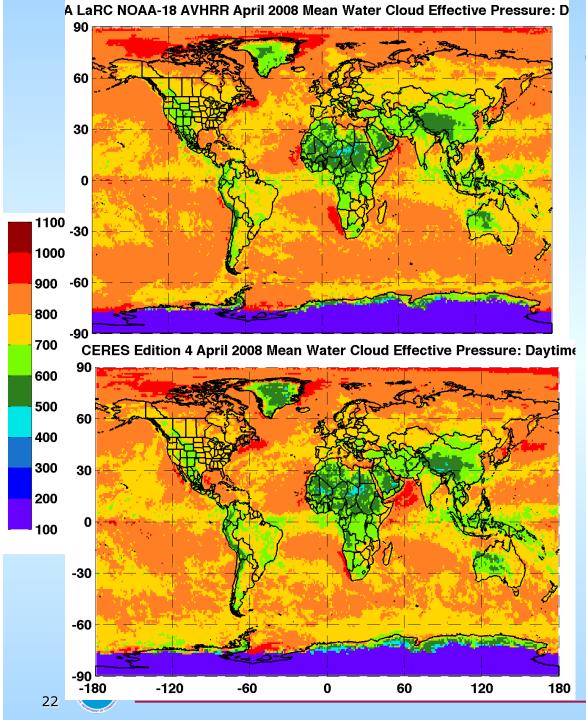
Filtering 3.7-µm Channel: NOAA-9 Night



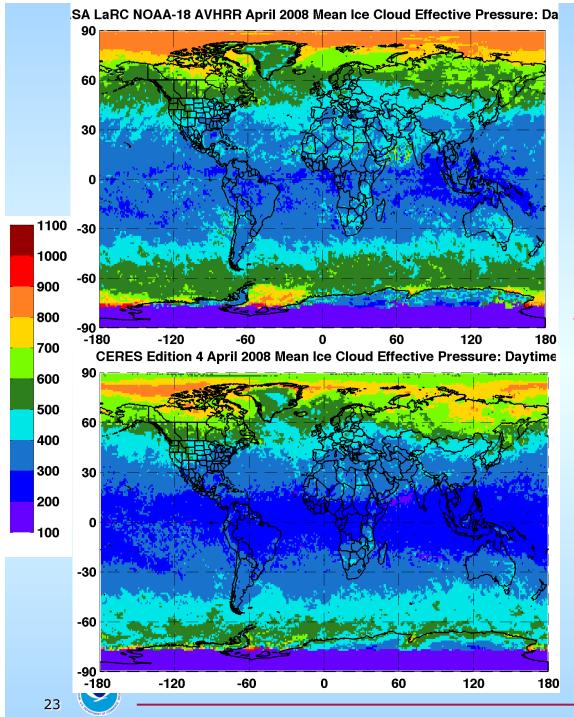
AVHRR vs CERES Cloud-Mask Results



• AVHRR mask still needs tweaking, more in polar regions


Cloud Fraction N18 vs Aqua, April 2008 Daytime

- patterns & magnitudes very close except polar regions
- CERES < AVHHR over midlatitude storm tracks
 - 4-km resolution may reduce hole detection
- CERES > AVHRR over trade
 Cu & stratCu
 - extra hour (1330-1430 LT)
 could reduce those cloud
 types a few percent

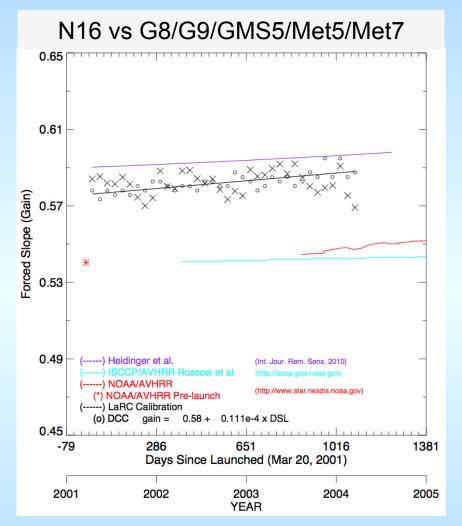

Cloud Fraction N18 vs Aqua, April 2008 Night

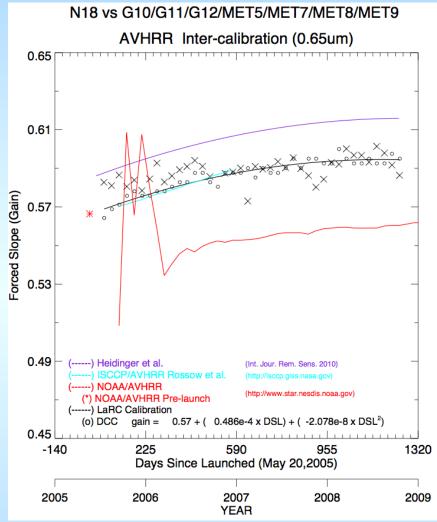
- patterns & magnitudes very close except polar regions
 - poles need work
- CERES < AVHHR over south mid-latitude storm tracks
 - 4-km resolution may reduce hole detection
- CERES > AVHRR over trade
 Cu & stratCu
 - resolution?
- CERES > AVHRR over tropical convective areas: thin cirrus
 - lack of CO2?
 - sensitivity of T11-T12?

Cloud Effective Pressure N18 vs Aqua, April 2008 Water Cloud, Daytime

- patterns and magnitudes very close
- p(CERES) < p(AVHHR) over some higher water clouds & vice versa over some near-coast ocean areas
 - constant lapse rate used for AVHRR
 - region-dependent lapse rate used for CERES
- slightly different sampling

Cloud Effective Pressure N18 vs Aqua, April 2008 Ice Cloud, Daytime


- similar patterns & magnitudes
- *p*(AVHRR) < *p*(CERES) over tropics & polar regions
 - MODIS CO₂ channel has big effect on thin ice cloud height
 may need IR

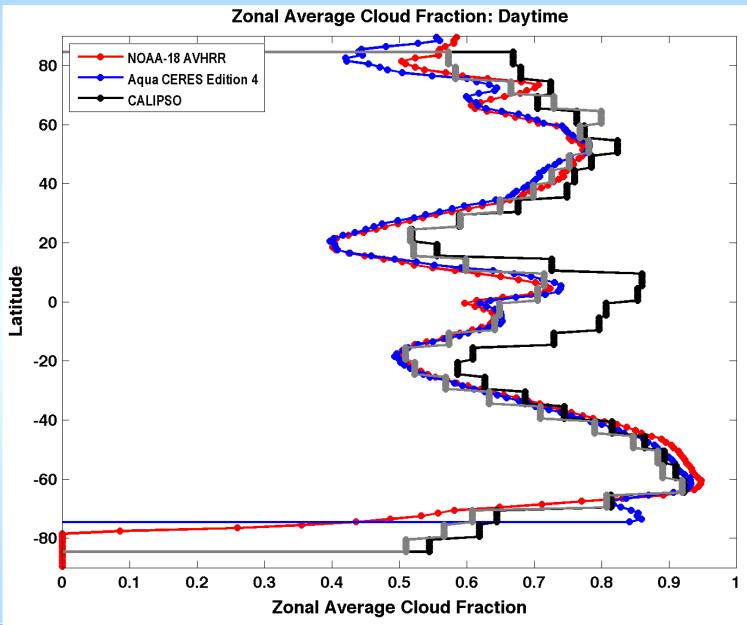

only method

Calibration Validation Strategy

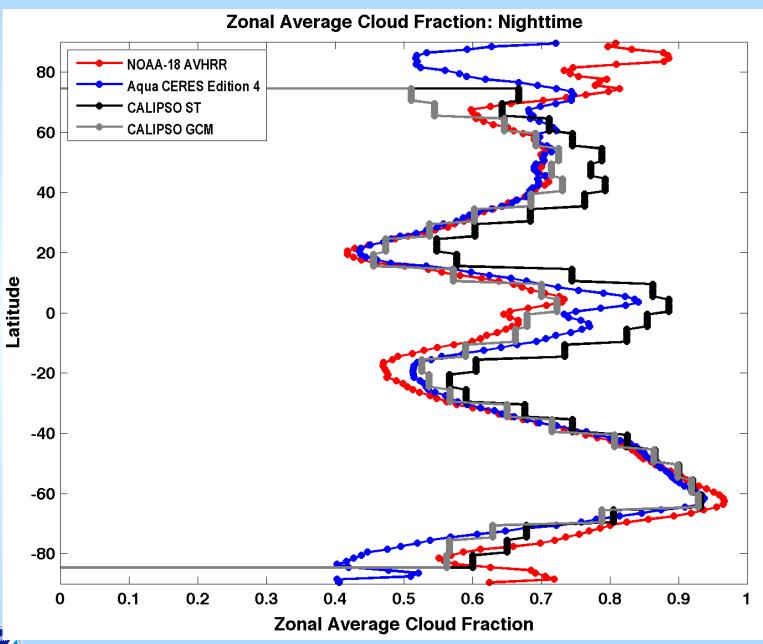
- Validate against direct ray-matching with MODIS for 2000+ period
- Examine trends in cloud optical depths
- Compare with other sources
- Inter-method consistency checks

Preliminary N16 & N18 calibration

- LaRC N16 ~7% > NOAA gain; N18 ~6% > NOAA gain
- LaRC N16 ~1.8% < Heidinger; N18 ~3.5% < Heidinger
- Similar temporal trends as Heidinger



Cloud Validation Strategy


- Compare NOAA 14-19 results w/ CERES & GOES
 - Use closest match (e.g., Aqua w/NOAA-18)
 - Use GOES & Meteosat for off hours
- Compare NOAA-14 -19 w/ARM & CALIPSO data
 - Cloud amounts, heights, & some cloud properties
- Compare long term trends with other climatologies
 - ISCCP, PATMOS-X, surface data
- Examine long-term trends for artifacts due to sensor change

Zonal Cloud Fraction Comparison, Day, April 2008

Zonal Cloud Fraction Comparison, Night, April 2008

Publications & Presentations

- Doelling, D. R., C. Lukashin, P. Minnis, B. Scarino, and D. Morstad, 2011: Spectral reflectance corrections for satellite intercalibrations using SCIAMACHY data. *Geosci. Remote Sens. Lett.*, doi: 10.1109/LGRS.2011.2161751, in press.
- Wu, X., et al., 2011: Assessment of MetOp-A Advanced Very High Resolution Radiometer (AVHRR) Short Wave Infrared channel measurements using Infrared Atmospheric Sounding Interferometer (IASI) observations and line-by-line radiative transfer model simulations. Remote Sens. Lett., submitted.
- Bedka, K., J. Brunner, R. Dworak, W. Feltz, and P. Minnis, 2010: Objective overshooting convective cloud top detection: climatology, product validation, and their relationship with severe weather and aviation hazards. 2010 EUMETSAT Satellite Conference, Cordoba, Spain, September 20-24.
- Minnis, P. W. L. Smith, Jr., S. Sun-Mack, Y. Chen, D. A. Spangenberg, R. Palikonda, and R. F. Arduini, 2010: Retrieving cloud properties over snow and ice surfaces. 3rd Intl. Symp. Recent Advances in Quantitative Remote Sens., Valencia, Spain, September 27-October 1, S3.1.
- Scarino, B., D. R. Doelling, D. Morstad, A. Gopalan, P. Minnis, R. Bhatt, and C. Luckachin, 2010: Absolute calibration of AVHRR visible sensors using SCIAMACHY hyperspectral data and MODIS radiances. 2010 AGU Fall Mtg., San Francisco, CA, December 13-17, A13G-0303.
- Morstad, D., D. R. Doeliing, B. Scarino, A. Gopalan, R. Bhatt, and P. Minnis, 2010: AVHRR calibration approach that uses ray-matching, invariant desert, and deep convective cloud techniques. 2010 AGU Fall Mtg., San Francisco, CA, December 3-17, A13G-0304.

Issues/Risks & Work-Off Plans

- Calibration SZA > 55°
 - Use interpolation/extrapolation and/or push SZA limits
 - Use GEO cal directly
- Polar mask
 - Continue tuning using MODIS as AVHRResolution differences
 - Test effect by degrading MODIS, examine thresholds
- Cloud height
 - Implement regionally dependent lapse rates
 - Use IR only retrievals for thin cirrus
- Polar cloud retrievals
 - Continue refining 0.65/0.86-μm methods vs 1.24/2.1 μm methods

Schedule

- Year 1 Completed semi-automated integration software for DCCT & NSRT calibrations
 - Completed preliminary AVHRR calibrations (N9, 11, 14,16, 18)
 - Evaluated MODIS data to establish references and uncertainties
 - Perform desert site calibrations
 - Calibrated GEOsat calibrations (1985-present)
 - Set up global automated cloud analysis system to apply to AVHRR
 - Developed automated navigation & filtering methods
 - Analyze initial AVHRR data (N18)
 - Computed SRF ratios from SCHIAMCHY data

Year 2

- Refine polar retrieval method to incorporate improved snow albedo and SIST
- Perform final calibrations AVHRR (N9-N19)
- Set up website to provide calibration and cloud results
- Coordinate with NCDC to archive results
- Perform cloud retrievals on AVHRR data (N9, N11, N14- N19)
- Compare desert site calibrations to NSRT-DCCT results
- Document GEOsat and AVHRR calibrations (1991-2010)

- Year 3 Update MODIS calibrations
 - Complete record of AVHRR and GEOsat calibrations to 1978
 - Complete cloud analyses for AVHRR through 1978 (N5 N10)
 - Complete error analyses & validation
 - Provide final reports on TCDR and FCDRs
 - Document results in journal articles

Transition Plan

DOCUMENTATION

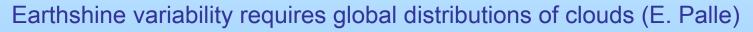
- Climate Algorithm Theoretical Basis Document (C-ATBD)
 - Delivery early 2013
- Data Flow Chart and Maturity Matrix
 - Next page
- DATA SET(S)
 - Product output in NetCDF-4
 - Units, missing value, valid range, coordinates, scale factor, long name specified as attributes in metadata
 - 1 orbit of Level 2 products=13000x409 pixels
 - ~450,000 AVHRR orbits (1978-2010) * 100 Mb/orbit

45 TB of GAC 4 km pixel level retrieval output

SOURCE CODE

- Old NASA ATBD, algorithm mostly described in Minnis et al. (TGRS, 2008, 2011)
- Code is currently under development and evolving so documentation will follow
- Mixture of C and Fortran with shell script driver
- README (none)

CDR Maturity Matrix


Climate Data Record (CDR) Maturity Matrix

Maturity	Software Readiness	Metadata	Documentation	Product Validation	Public Access	Utility
1	Conceptual development	Little or none	Draft Climate Algorithm Theoretical Basis Document (C-ATBD); paper on algorithm submitted	Little or None	Restricted to a select few	Little or none
2	Significant code changes expected	Research grade	C-ATBD Version 1+; paper on algorithm reviewed	Minimal	Limited data availability to develop familiarity	Limited or ongoing
3	Moderate code changes expected	Research grade; Meets int'l standards: ISO or FGDC for collection; netCDF for file	Public C-ATBD; Peer-reviewed publication on algorithm	Uncertainty estimated for select locations/times	Data and source code archived and available; caveats required for use.	Assessments have demonstrated positive value.
4	Some code changes expected	Exists at file and collection level. Stable. Allows provenance tracking and reproducibility of dataset. Meets international standards for dataset	Public C-ATBD; Draft Operational Algorithm Description (OAD); Peer- reviewed publication on algorithm; paper on product submitted	Uncertainty estimated over widely distributed times/location by multiple investigators; Differences understood.	Data and source code archived and publicly available; uncertainty estimates provided; Known issues public	May be used in applications; assessments demonstrating positive value.
5	Minimal code changes expected; Stable, portable and reproducible	Complete at file and collection level. Stable. Allows provenance tracking and reproducibility of dataset. Meets international standards for dataset	Public C-ATBD, Review version of OAD, Peer-reviewed publications on algorithm and product	Consistent uncertainties estimated over most environmental conditions by multiple investigators	Record is archived and publicly available with associated uncertainty estimate; Known issues public. Periodically updated	May be used in applications by other investigators; assessments demonstrating positive value
6	No code changes expected; Stable and reproducible; portable and operationally efficient	Updated and complete at file and collection level. Stable. Allows provenance tracking and reproducibility of dataset. Meets current international standards for dataset	Public C-ATBD and OAD; Multiple peer reviewed publications on algortihm and product	Observation strategy designed to reveal systematic errors through independent cross-checks, open inspection, and continuous interrogation; quantified errors	Record is publicly available from Long- Term archive; Regularly updated	Used in published applications; may be used by industry; assessments demonstrating positive value

1 & 2	Research
3 & 4	10¢
5 & 6	FOC

Benefit to the Science Community

- Climate modeling & monitoring community
 - GEWEX cloud observation intercomparison (Stubenrauch et al., 2011?)
 - Cloud frac/height comparisons w/GCMs (Zhang et al., JGR, 2005)
 - Cloud IWP comparisons w/GCMs (Waliser et al., JGR, 2009)
- Datasets from our study will provide calibrations & uncertainty estimates for users of AVHRR radiances and cloud data
 - Requests for calibration information are common
- Facilitates development of other CDRs requiring cloud-free scenes or those requiring cloud information
 - E.g., regional surface temperature trends, UTH studies (Luo), ERB (Kato)
- International scientists & grad students (no advertising)
 - Requests for old cloud data from Chile, Israel, Argentina, Brazil, etc.
 - 3-5 requests per year from grad students
- Earth albedo

Benefit to Society (anecdotal)

- Indirect climate benefits already mentioned
- Energy sector
 - At least, one company currently using our historical GOES pixel level cloud data for solar collector siting, longer record -> better stats
- Transportation (potential)
 - Aviation, improved statistics on aircraft icing conditions can be developed from long-term cloud data (NTSB has requested archived cloud properties in past)
 - Aviation and ground transport, statistics on fog for highway & airport planning, land use, etc.

Communications

 A cell phone company used our GOES pixel data for studying transmission of signals, longer AVHRR record -> better stats

Public

- Appalachian Mtn Club requested historical cloud height data to study effect of cloud ceiling on Mt Washington tree line
 - NASA S'COOL program: direct use of sat cloud data by K-12

Resources

- Number of personnel employed for project
 - 2.8 FTE
- Key equipment or observatories used
 - NASA Langley Research Center, AMI computer
 - NASA Ames Columbia Supercomputer
- Key collaborating projects or personnel
 - NASA CERES (Minnis, Doelling)
 - NOAA GSICS activity, Co-I: D. Doelling, X. Wu, X. Xiong)
 - NASA CALIPSO/CloudSat
- NOAA points-of-contact or collaborators, as applicable
 - K. Knapp, NCDC
 - X. Wu, NESDIS
- Target NOAA Data Center: NCDC
- How can the CDR Program Office help you?
 - Clear guidelines

