Examination of CALIPSO cloud detection in broken cloud conditions using high resolution MODIS data

C. R. Yost¹, P. Minnis², S. Sun-Mack¹, L. Nguyen², Y. Yi¹

¹Science Systems and Applications, Inc. (SSAI), Hampton, VA ²NASA Langley Research Center, Hampton, VA

CloudSat Science Team Meeting
Seattle, WA
19 August, 2008

Outline

- The Cloud and the Earth's Radiant Energy System (CERES) cloud mask
 - Applied to Aqua- and Terra-MODIS data
 - Generally detects more warm clouds than CloudSat alone, but fewer than CALIPSO
- Broken cloud scenes can be problematic for CERES
 - e.g., trade cumulus
 - Cloud edges are also a problem; retrieved optical depth too small
 - Use 250-m MODIS visible reflectance and dynamic threshold technique to detect more small-scale clouds (area << 1 km²)
- Compare results of threshold method with CERES Cloud Mask and CALIPSO

CERES vs GLAS: 26 Sept – 18 Nov 2003

ICESat in near-terminator orbit, 532-nm med res clouds

- Zonal differences with GLAS similar to those between CERES and other passive retrievals, except in north polar areas
 - mean dif = 7.8%
- Regional differences mainly trade Cu, land, Arctic
 - polar mask has better agreement over land

Daytime agreement!

	Day	Night	Total
GLAS 532	62.8 (63.2)	74.1 (74.4)	68.9 (70.3)
CERES Aqua	62.0	60.6	61.3
CERES Terra	60.5	61.3	60.9

CALIPSO - CERES Cloud Amount Differences, July 2006

In general, CERES detects fewer clouds compared to CALIPSO -

Mostly polar night & tropics (high & low clouds)

250-m cloud mask

- Use 250-m MODIS visible reflectance to assess Aqua-CERES cloud amounts
 - Based on the derivative of the reflectance frequency distribution
 - Tuned by comparing initial results with MODIS 250-m reflectance images
 - Apply to every 1-km MODIS pixel

0.15

250-m cloud mask

- Use 250-m MODIS visible reflectance to assess Aqua-CERES cloud amounts
 - Based on the derivative of the reflectance frequency distribution
 - Tuned by comparing initial results with MODIS 250-m reflectance images
 - Apply to every 1-km MODIS pixel

250-m cloud mask

- Good overall performance over ocean surfaces
 - Trouble areas
 - Over land (use IGBP index)
 - High viewing zenith angles pixel smearing
 - Thin cirrus blends in with the underlying surface, but some is detectable

250-m Mask Performance

- Examined 21 cases of Scu and Cu from Jun 2006 Mar 2007
- Good linear correlation with CERES for both Cu and Scu fields
- CERES generally has higher cloud fraction values, especially for Scu
- Higher CERES cloud fractions expected CERES has larger FOV
- CERES may underestimate cloud fraction when true fraction is < 0.30

Cloud Fractions

- Examine cloud fractions along CALIPSO track for same 21 cases
- Matched data from CERES, Aqua-MODIS, and CloudSat to CALIPSO track

CERES

CERES

- Scu fairly good linear correlation; overestimates
- Cu more scatter; tends to underestimate for cloud fractions < 0.30
- CloudSat very few cloud detections at the highest 2 levels of confidence (clouds too low?)

Cloud Fractions

- Examined 2 CALIPSO products
 - Vertical Feature Mask (VFM)
 - Contains cloud/aerosol classifications
 - 30-m vertical resolution from -0.5 8.2 km AMSL
 - 333-m Cloud Layer Product
 - Cloud products for up to 5 cloud layers
 - Valid from the surface to 8.2 km

VFM has many more cloud detections, but very good agreement with the CALIPSO cloud products

VFM Product

333-m Cloud Product

Cloud Fractions

- Relaxed thresholds to match VFM product
- VFM shows solid deck of clouds while satellite images show scattered Cu
- Some cloud detections get averaged out in the Cloud Layers product?

Summary

- Used 250-m Aqua-MODIS data to determine cloud fraction within each 1-km footprint
 - Based on the derivative of the reflectance frequency distribution
- Generally good agreement with CERES
 - Highly correlated
 - CERES tends to overestimate cloud amount for StCu because its FOV is larger
 - CERES may underestimate cloud fraction for scattered cumulus scenes
 - 250-m MODIS visible reflectance data should help in both cases
- Good agreement with CALIPSO 333-m Cloud Layers product
- CALIPSO VFM finds much more cloudiness than all methods
 - Given large number of water clouds with τ < 0.3, VFM may misclassify haze as clouds
- Future work examine effects on retrieved cloud properties, especially optical depth and effective size, for cumulus clouds and cloud edges

