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Abstract— The NASA Clouds and Earth’s Radiant Energy 

System (CERES) Project is designed to improve our 
understanding of the relationship between clouds and solar and 
longwave radiation. This is achieved using satellite broadband 
instruments to map the top-of-atmosphere radiation fields with 
coincident data from satellite narrowband imagers employed to 
retrieve the properties of clouds associated with those fields. This 
paper documents the CERES Edition-2 cloud property retrieval 
system used to analyze data from the Tropical Rainfall 
Measuring Mission (TRMM) Visible Infrared Scanner (VIRS) 
and by the Moderate Resolution Imaging Spectroradiometer 
(MODIS) instruments onboard the Terra and Aqua satellites 
covering the period 1998 through 2007. Two daytime retrieval 
methods are explained: the Visible Infrared Solar-infrared Split-
Window Technique (VISST) for snow-free surfaces, and the 
Shortwave-infrared Infrared Near-infrared Technique (SINT) 
for snow or ice-covered surfaces. The Shortwave-infrared 
Infrared Split-window Technique (SIST) is used for all surfaces 
at night. These methods, along with ancillary data and empirical 
parameterizations of cloud thickness, are used to derive cloud 
boundaries, phase, optical depth, effective particle size, and 
condensed/frozen water path at both pixel and CERES footprint 
levels. Additional information is presented detailing the potential 
effects of satellite calibration differences, highlighting methods to 
compensate for spectral differences and correct for atmospheric 
absorption and emissivity, and discussing known errors in the 
code. Because a consistent set of algorithms, auxiliary input, and 
calibrations across platforms are used, instrument and 
algorithm-induced changes in the data record are minimized. 
This facilitates the use of the CERES data products for studying 
climate-scale trends. 
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I. INTRODUCTION 
nderstanding the relationship between clouds and solar and 
longwave radiation processes requires determination of the 

cloud distribution and radiation budget as well as the 
associated cloud microphysical and macrophysical properties. 
The NASA Clouds and Earth’s Radiant Energy System 
(CERES) Project [1] was designed to facilitate this 
understanding by measuring the top-of-atmosphere radiation 
fields simultaneously with cloud properties using instruments 
onboard several satellites to provide global and diurnal 
coverage. The CERES scanners, which measure broadband 
shortwave and combined (total) shortwave and longwave 
radiances, operated on the Tropical Rainfall Measuring 
Mission (TRMM), Terra and Aqua satellites. Data from the 
TRMM Visible Infrared Scanner (VIRS) [2] and the Terra and 
Aqua Moderate Resolution Imaging Spectroradiometer 
(MODIS) [3] are used for discriminating between clear and 
cloudy scenes, and for retrieving the properties of clouds in 
the latter and the aerosols in the former. Those cloud 
properties, including cloud fraction, phase, temperature, 
height, optical depth, effective particle size, and 
condensed/frozen water path, are key parameters needed to 
link the atmospheric radiation and hydrological budgets. The 
CERES radiation measurements and their inversion as well as 
the methods for identifying cloudy pixels and retrieving 
aerosol properties in clear pixels have been described 
elsewhere [4-8]. This paper documents the CERES algorithms 
that have been used to derive cloud properties from the 
TRMM, Terra, and Aqua data taken between 1998 and 2007.  

To study climate-scale trends, it was recognized that cloud 
and radiation fields must be determined using consistent 
algorithms, auxiliary input (e.g., atmospheric temperature and 
humidity profiles), and calibrations across platforms to 
minimize instrument- and algorithm-induced changes in the 
record. CERES planned to measure the complete diurnal cycle 
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of clouds and radiation for the Tropics and obtain 
unprecedented sampling of those same fields in the extra-
tropics by combining data from the precessing-orbit TRMM 
with the late morning Terra and early afternoon Aqua 
observations. The requirements for consistency, simultaneity, 
and collocation between the cloud and radiation measurements 
necessitated the development of a set of algorithms and a 
processing system that was independent of other global cloud 
processing systems that were either operating or being 
developed prior to launch of the first CERES-bearing orbiter. 
Although cloud properties have been derived from 
geostationary and NOAA polar-orbiting satellites since 1983 
by the International Satellite Cloud Climatology Project 
(ISSCP) [9], those products cannot be used because ISCCP 
samples the imager data at an effective resolution of ~32 km 
(larger than a CERES footprint, ~ 20 km), cloud particle size 
is assumed in the retrievals, and simultaneity with the CERES 
satellites is very limited. Like the ISCCP data, the Advanced 
Very High Resolution Radiometer (AVHRR) Pathfinder 
Atmospheres Extended (PATMOS-x) cloud products [10] 
were not usable because they have little simultaneity (< 5 min) 
with the satellites carrying the CERES scanners. Pixel-level 
cloud properties are derived from MODIS data by the MODIS 
Atmosphere Science Team (MAST), but they are retrieved 
with algorithms that use many of the 36 MODIS spectral 
bands [11,12] and auxiliary input data that are not necessarily 
consistent over time. The MAST algorithms, which have been 
used to generate the standard MAST products, i.e., 
MOD06/MYD06 and MOD35/MYD35 products from MODIS 
data [13], would be unable to yield cloud properties consistent 
with the standard MAST results when applied to the 5-channel 
VIRS data. Furthermore, CERES requires complete cloud 
information for each footprint and that is not always available 
in the standard MAST products.  

The TRMM CERES scanner failed early in the mission 
obviating some of the consistency requirements, but other 
more important factors necessitated the development of 
independent cloud and aerosol analysis algorithms. CERES is 
an end-to-end processing system with cloud properties feeding 
into subsystems that determine top of atmosphere (TOA), 
surface, and atmospheric radiative fluxes, including a 
complex, time-space averaging subsystem that employs 
geostationary satellite measurements [14]. The cloud detection 
and retrieval algorithms had to be responsive to the needs of 
the downstream processing systems and had to be as 
consistent as possible with the CERES geostationary satellite 
data processing system [14]. Given the limitations of external 
cloud datasets and the internal team interaction and 
consistency requirements, a unique set of cloud detection and 
retrieval algorithms was developed for CERES utilizing as 
few channels as possible while producing stable and accurate 
cloud properties that are compatible with the CERES 
anisotropic models.  

This paper provides an overview of the algorithms used by 
CERES to retrieve cloud properties for pixels identified as 
cloudy by the CERES cloud mask [5]. Three distinct methods 
are used. During daytime, the Visible Infrared Shortwave-

infrared Split-window Technique (VISST) is used over snow-
free surfaces, while the Shortwave-infrared Infrared Near-
infrared Technique (SINT) is applied when the background is 
identified as being covered by snow or ice. At night, the 
Shortwave-infrared Infrared Split-window Technique (SIST) 
is used over all surfaces. The theoretical bases for these 
algorithms have been described elsewhere [15,16], so this 
paper serves to document the actual algorithms and their 
updates. A companion paper [17] presents examples of 
averaged results and comparisons with other datasets. 

This is the second of four papers [5, 18, 19] that describe 
the CERES cloud analysis system for VIRS Edition 2 (Ed2), 
Terra Ed2, and Aqua Ed2 (also denoted as Ed1a). The initial, 
Edition 1 (Ed1), VIRS cloud property retrieval system (CPRS) 
was completed in 1998 and updated, along with Terra Ed1, to 
the VIRS and Terra Ed2 versions in 2003. The Aqua Ed2 
CPRS is the same as that for Aqua Edition 1a. Processing of 
VIRS and MODIS data for CERES using all 3 of the second 
edition algorithms described here began during 2004, 
beginning with data taken at each imager’s start-of-operations 
date. 

II. DATA 
Figure 1 shows the flow of data into the CERES CPRS. The 

imager radiance data (Box I, Fig. 1) are processed in groups of 
pixels denoted as a tile. Each tile consists of an array of pixels 
defined by 16 scan lines with 8 or 16 elements for MODIS and 
VIRS, respectively. These arrays nominally correspond to 32 
km x 32 km, a coverage obtained by sampling for MODIS. 
Although each pixel is analyzed individually, all pixels within 
a given tile use the same clear radiances and atmospheric 
corrections in the retrieval to increase computational 
efficiency. The input parameters used in the retrievals are 
explained below. 

A. Satellite radiances 
Because of the requirement for consistent retrievals among 

the various sensors, the CPRS nominally uses only 5 channels: 
0.64 (visible, VIS), 1.6 (near-infrared, NIR), 3.8 (shortwave-
infrared, SIR), 10.8 (infrared, IR), and 12.0 µm (split window, 
SW). For CERES, these channels are sequentially numbered 1 
through 5. For Aqua, the 2.1-µm channel replaces the 1.6-µm 
channel (CERES reference channel 2) in this analysis due to 
shortcomings in the Aqua 1.6-µm channel. The calibrations of 
the relevant VIRS and MODIS channels are only briefly 
discussed here, because they have already been reviewed in 
detail [5]. 
 1) VIRS: The VIRS scans in a cross-track mode out to a 
nadir angle of 45°, which translates to a maximum viewing 
zenith angle VZA (θ) of 48°. The TRMM orbit gives the VIRS 
a viewing perspective distinctly different from either 
geostationary or Sun-synchronous satellites and allows it to 
sample all local times of day over a 46-day period. At the 
Equator, this sampling is evenly distributed over the period, 
but at higher latitudes (maximum of ~38°), the sampling is 
primarily in darkness for 2 weeks followed by 2 weeks of  
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Fig. 1. CERES cloud processing scheme. Algorithms corresponding to shaded 
boxes are discussed in [5]. 
 
sunlight. The VIRS data were obtained from the NASA 
Langley Atmospheric Sciences Data Center. 

Version-5a VIRS data are analyzed by CERES at full 
resolution. Changes to the VIRS channel calibrations, 
reviewed by Minnis et al. [5], include corrections of the NIR 
channel for a thermal leak at 5.2 µm and for a large (~18%) 
bias relative to its Terra MODIS counterpart. A slight day-
night calibration discrepancy in the IR and SW channels is not 
taken into account here.  
 2) MODIS: Terra MODIS [3] began collecting data starting 
in late February 2000 from a Sun-synchronous orbit with a 
1030-LT equatorial crossing time. Aqua MODIS became 
operational in July 2002 from a Sun-synchronous orbit with a 
1330-LT equatorial crossing time. CERES ingests a 19-
channel subset of the 36-channel MODIS complement with 
the intention of using additional channels in future editions of 
the algorithms and in subsystems outside the CPRS (for 
summary, see [5]). The 0.25-km channel-1 (VIS) pixels 
corresponding to the 1-km channel-1 pixels are also included 
in the ingested data for future use. To minimize processing 
time, the 1-km MODIS data are sampled by taking every other 
pixel and scan line. This subsetted dataset, provided by the 
NASA Goddard Space Flight Center Distributed Active 
Archive Center, was further reduced by sampling every other 
pixel during actual processing, yielding an effective resolution 
of ~2.8 km. For a given CERES footprint (~ 20 km at nadir for 
Aqua and Terra, ~10 km for VIRS), this additional 
subsampling yields cloud properties having small root mean 
square (rms) differences (e.g., 0.013 in cloud fraction) relative 
to those determined using the original subsetted sampling.  

No calibration changes were applied to the MODIS data 
despite some discrepancies between Aqua and Terra at certain 
wavelengths. On average, the Terra SIR brightness 
temperatures are 0.55 K greater than those from Aqua during 

the daytime. At night, the Aqua SIR data having brightness 
temperatures Tb > 250 K vary linearly with Terra, in the 
manner observed during the daytime, with the Terra values 
typically exceeding their Aqua counterparts by 0.55 K. At 
lower temperatures, the Terra temperatures vary exponentially 
with their Aqua counterparts asymptoting to a value of 218 K 
as the Aqua values reach 197 K. The Terra VIS channel gain 
was found to drop by 1.17% after November 18, 2003, but 
otherwise had no trends. Prior to that date, the Terra VIS gain 
is 1% less than the Aqua gain. The Aqua reflectance is 4.6% 
greater, on average, than that from VIRS, a result that is 
consistent with the theoretical differences between the VIRS 
and MODIS spectral windows. During the day, the VIRS SIR 
brightness temperatures are 1.39 and 0.85 K less than the 
Terra and Aqua MODIS values, respectively. More details 
about these intercalibrations and those for other channels are 
provided in [5] and the references therein. 

B. Ancillary data 
1) Vertical profiles: Vertical profiles of temperature, 

humidity, wind, and ozone and total aerosol amounts comprise 
the CERES Meteorology, Ozone, and Aerosol (MOA) dataset 
(Box A, Fig. 1). The CERES MOA temperature, wind, and 
humidity profiles are based on numerical weather analyses 
(NWA): the European Centre for Medium-range Weather 
Forecasting (ECMWF) reanalyses for VIRS and the Global 
Modeling Assimilation Office Global Earth Observing System 
(GEOS) Model 4.03 analyses [20] for the MODIS processing 
through December 2007 and GEOS 5.0 thereafter. The 
ECMWF profiles were available at a nominal resolution of 
0.5° every 6 hours and surface skin temperature Ts was 
available every 3 hours. GEOS profiles and skin temperatures 
were made available at the same temporal resolutions on a 1° 
grid. The ozone vertical profile and total column 
concentrations, are taken from the 2.5° National Centers for 
Environmental Prediction (NCEP) Stratosphere Monitoring 
Ozone Blended Analysis (SMOBA) [21] or from the Earth 
Probe Total Ozone Mapping Spectrometer (total column 
optical depth only) at a 1.25° resolution when SMOBA data 
are not available. All input MOA data are interpolated to a 
common 1° x 1° grid. These include surface skin temperature, 
height, and total column ozone, and profiles of temperature, 
specific humidity, and ozone at up to 58 pressure levels from 
the surface to 0.1 hPa [22].  

The impact of switching from ECMWF to the GEOS 
analyses on long-term consistency in the CERES products was 
examined by [23] and [24]. During the day and night, the non-
polar GEOS land surface temperatures average approximately 
0.1 K and 0.4 K greater than their ECMWF counterparts, 
respectively. These differences had minimal impact on 
daytime cloud fraction, but caused a 2% increase in nighttime 
cloudiness with GEOS input, particularly over deserts. 
Changes in the MODIS cloud mask were devised to minimize 
that increase, which was found to be due to false cloud 
detection, and any inconsistencies produced by the change 
from ECMWF to GEOS-4. The change is expected to have 
negligible impact on the average cloud properties. 
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TABLE I. 
IGBP SURFACE TYPES (GENERAL TYPE USED FOR MODEL SELECTIONS). 

  1.  evergreen needleleaf (conifer)                       
  2.  evergreen broadleaf  (conifer)                        
  3.  deciduous needleleaf (deciduous)                      
  4.  deciduous broadleaf (deciduous)                         
  5.  mixed forests (1/2 conifer + 1/2 deciduous)        
  6.  closed shrublands (mosaic)                                 
  7.  open shrubland (mosaic)                                    
  8.  woody savannas (grass)                                     
  9.  savannas (grass)                                                 
10.  grasslands (grass)  
11.  permanent wetlands (1/2 grass + 1/2 water) 
12.  croplands = grass 
13.  urban 
14.  mosaic (1/2 grass + 1/2 mixed forest) 
15.  snow/ice 
16.  barren/sparsely vegetated (desert) 
17.  water 
18.  tundra (1/2 grass + 1/2 water) 
19.  coastline (10% to 90% water) 

 
2) Surface characteristics: Surface type is used to select the 

surface albedos and emissivities, as well as to select which 
method is employed to retrieve cloud properties. Surface type 
(Box D, Fig. 1) is denoted with the variable K and given a 
value of 1-19 corresponding to one of the 19 modified 
International Geosphere Biosphere Programme (IGBP) surface 
types [25] listed in Table I. The land percentage in each 10’ 
IGBP grid box was computed from the 1-km IGBP land-water 
dataset. Daily ice and snow extent data (Box C, Fig. 1) are 
obtained from the Near Real-Time Equal Area Special Sensor 
Microwave Imager Earth-Grid Daily Global Ice Concentration 
and Snow Extent products [26] on a nominal 25-km polar 
stereographic grid and supplemented by the National 
Environmental Satellite Data and Information Service 
Interactive Multisensor Snow and Ice Mapping System Daily 
Northern and Southern Hemisphere Snow and Ice Analysis in 
the vicinity of coastlines [27]. All snow and ice extent values 
are interpolated to a 10’ grid. If the ice and snow map 
indicates that the snow or ice percentage exceeds 0% or 50%, 
respectively, within a given tile and the scene is overcast, or 
more than 50% of the clear pixels within the tile are identified 
as snow, then the surface type is temporarily designated as K = 
15, snow/ice. 

Average land elevation was determined for each 10’ region 
from the 1-km United States Geophysical Survey GTOPO30 
dataset (http://edc.usgs.gov/products/elevation/ gtopo30/ 
gtopo30.html). The percentage of water surface in a given 10’ 
region was determined from the 1-km IGBP dataset. These 
data are included in Box D, Fig. 1. 

3) Surface emissivity and albedo: Spectral surface 
emissivities εsi, available on the 10’ grid, are used in 
conjunction with the MOA skin temperatures to estimate the 
clear-sky radiances for the CERES reference channels, i = 3,5, 
where the wavelengths are listed in Table II. These 
emissivities have been discussed in detail elsewhere [5]. 

 When channels 1-3 are used in the retrievals during 
daytime, the surface bidirectional reflectance ρs and diffuse 
albedo αsd are used to determine the reflected radiation field 
underneath the cloud. For channel 1, αsd and ρs are estimated,  

TABLE II.  
CENTRAL WAVELENGTHS (µM) FOR VIRS AND MODIS CHANNELS 

CERES Reference 

Channel # 
VIRS MODIS 

MODIS 

Channel # 
Absorbing Gas 

1 0.625 0.646 1 H2O, O3 

2 1.609 1.629 6 H2O, CO2, CH4 

2 (Aqua) -- 2.114 7 H2O, CO2, CH4 

3 3.787 3.792 20 H2O, CO2, N2O 

4 10.75 11.03 31 H2O, CO2, 

5 11.95 12.02 32 H2O, CO2, 

respectively, from the diffuse clear-sky albedo αcsd1 at a solar 
zenith angle (SZA) of 53° and from the clear-sky reflectance, 
ρcs1, as described by (3) and (4) in [5]. The channel 2 and 3 
albedos and reflectances are estimated in a more direct 
manner. The surface or clear-sky reflectances and diffuse 
albedos for each channel are obtained either from the 
prescribed values (Boxes E and H, Fig. 1) used in the cloud 
mask or from clear pixels within the tile (Box K, Fig. 1) 
resulting from the cloud mask. The latter are used if more than 
10% of the tile is clear.  

The prescribed values for the VIS and NIR channels over 
water surfaces are taken from an updated version of the VIS 
bidirectional reflectance distribution function (BRDF) of [28]. 
For land and snow surfaces, the VIS overhead-sun clear-sky 
albedos αcs1(µo=1) and overhead-sun NIR surface albedos 
αs2(µo=1), based on bi-daily updated 10’ global maps, are 
passed through from the CERES cloud mask. These quantities 
and the sources for their values are discussed further by [5]. 
The variable µo = cos(θo), where θo is the SZA.  

The VIS diffuse clear-sky albedo is estimated at a given 
SZA for any 10’ region as  

 
αcsd1  = δcs1(K, µo=0.6) αcs1(µo=1),        (2) 
 

where δcs1 is the normalized directional reflectance model that 
predicts the variation of the clear-sky albedo with SZA for a 
given surface type. The value of δcs1 at µo = 0.6 (SZA = 53°) 
was selected based on the diffusivity approximation (used 
with VZA for thermal radiation). While this value serves as a 
good approximation for some scene types, a later analysis of 
each model, not shown, indicates that the value at SZA = 56° 
is more accurate and should be used in future editions. 

The VIS clear-sky reflectance is estimated as  
  
ρcs1(µo,µ,φ) = δcs1(K,µo) αcs1(µo=1) χ1(K, µo,µ,φ),   (3) 
 

where χ1 is the VIS BRDF, µ = cosθ, and φ is the relative 
azimuth angle.  

For the NIR channels, the diffuse surface albedo for any 10’ 
region is estimated as 

 
αsd2 = δsN(K,µo=0.6) αs2(µo=1),        (4) 
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TABLE III. 
AVERAGE DIMENSIONS OF HEXAGONAL ICE COLUMNS USED IN RETRIEVALS. 

De (µm) Volume (µm3) Area (µm2) 

5.83 0.12208E+03 0.37767E+02 

18.15 0.11549E+04 0.10387E+03 

23.86 0.68868E+04 0.47257E+03 

30.36 0.11001E+05 0.58102E+03 

41.20* 0.27780E+05 0.10328E+04 

45.30 0.22795E+05 0.73791E+03 

67.60 0.53529E+05 0.12299E+04 

75.2* 0.16837E+06 0.31445E+04 

104.9 0.33546E+06 0.43636E+04 

123.1 0.57019E+06 0.61101E+04 

134.9 0.17196E+07 0.16540E+05 
 * not used in Ed2 retrievals 

where the subscript, 2, indicates either 1.6 or 2.1-µm. The 
surface reflectance is,  

 
ρs2(µo,µ,φ)  = δs2(K,µo) αs2(µo=1) χs2(K, µo,µ,φ),   (5) 
 

where χs2 is the NIR BRDF. The VIS and NIR BRDFs are the 
same as those used in [5].  

The SIR reflectances and albedos are based on the surface 
emissivity. During daytime, solar radiation in the SIR channel 
reflected by the surface is added to the thermal emission from 
the surface. To account for this reflected contribution, the SIR 
or channel-3 surface reflectance is estimated as  

 
ρs3 = (1−εs3) χsN(K; µo,µ,φ),        (6) 
 
The BRDFs used for the 2.1-µm channel were also used for 

channel 3 because of the lack of bidirectional reflectance 
measurements at SIR wavelengths. An exception is the 
theoretical 3.8-µm snow reflectance model [29], which is used 
here for all snow and ice surfaces. Since the SZA dependence 
of the SIR albedo is unknown, the diffuse SIR albedo is 
estimated simply as  

 
αsd3 = (1−εs3).          (7) 

C. Cloud reflectance and emittance models 
The cloud water droplet and smooth solid hexagonal 

column ice crystal distributions described by Minnis et al. [30] 
were used to compute reflectance lookup tables (LUTs) for 
channels 1-3 and coefficients used in the emittance 
parameterizations for channels 3-5. For the VIS channel, the 
same optical properties listed by [30] were used in the adding 
doubling (AD) radiative transfer model to develop higher 
angular resolution LUTs: 21 regularly spaced (0.05 intervals) 
µo and µ nodes between 0 and 1, and 24 φ nodes with higher 
resolution near the extrema. The AD model used 350 
Legendre polynomials and 120 Fourier terms to deconvolve 
the water droplet and ice crystal scattering phase functions. 
The VIS LUTs cover the VIS optical depth τ range from 0.25 
to 128 for droplet effective radii re between 2 and 32 µm and 
ice crystal effective diameters De between 6 and 135 µm. 

Because effective diameter is defined as in [31], it is not 
directly comparable to the effective radius. However, for 
comparisons to other retrievals, the equivalent effective radius 
can be computed using the following formula. For ice,  

 
 re = (7.918 x 10-9 µm-2 De

2 + 1.0013 x 10-3 µm-1 De  
     + 0.4441) De.              (8) 
 
The VIS reflectance LUTs described in [32] are used to 

estimate the reflectance due to Rayleigh scattering in the 
atmosphere. It should be noted that Table 5 in [30] reproduced 
the wrong data giving the average volume and area for each of 
the effective ice crystal sizes. The correct values are given 
here in Table III. The values of De and ice water path in the 
retrievals are not based on those values and, therefore, the 
misprinted values in Table 5 of Minnis et al. [30] have no 
impact on the results. 

The VIS angular resolutions and deconvolutions were also 
used for the NIR and SIR calculations. The NIR optical 
properties for ice and water were computed using Mie 
scattering calculations as in [30] and ray-tracing results as in 
[33] covering the same optical depth range as the VIS models. 
In addition, cloud absorptances A2c(r,τ,µo) were computed as 
functions of particle size, optical depth, and µ o. These were 
integrated over µ o to obtain the diffuse solar absorptance 
A2cd(r,τ). All of the calculations are referenced to the VIS 
optical depth. 

Similarly, new values for the SIR optical properties were 
computed as in [30] and [33] using the MODIS and VIRS 
spectral filter functions. In this instance, however, the 
reflectances were computed separately for 0.1-µm sub-bands 
between 3.5 and 4.0 µm using the single-scattering albedos 
and extinction coefficients determined from Mie scattering 
calculations for liquid water droplets with the indices of 
refraction from [34] for each sub-band. The scattering phase 
functions are based on Mie scattering computations for the 
spectral-response-weighted indices of refraction. The sub-
band reflectances were then integrated over the spectral 
response function weighted by the TOA incoming radiances 
[35] to obtain a single reflectance for the band.  

Fig. 2, which plots the refractive indices of liquid water 
over the spectral response functions for AVHRR, VIRS, and 
MODIS, shows that the real index of refraction (Fig. 2a) for 
each of those bands varies linearly across the instruments’ 
spectral bands. On the other hand, the value of the imaginary 
index of refraction (Fig. 2b) is a minimum near the bands’ 
central wavelengths (~3.78 µm) so that the absorption is 
greater at all wavelengths away from the center. Thus, when 
the response is used to compute reflectance or absorption and 
convolved over the incoming solar radiances or for terrestrial 
radiances, the reflectance or absorption, respectively, will be 
less or greater than that if the indices of refraction were 
integrated over the spectral filters to obtain an effective index 
of refraction for the band. This is illustrated in Fig. 3 for the 
VIRS 3.8-µm channel. The maximum reflectances for a 6-µm 
water droplet model (Fig. 3a) are 0.29 and 0.27 using the 
effective indices of refraction and the solar weighted reflec- 
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Fig. 2. Spectral filter functions for the SIR bands on several imagers. (a) Real 
and (b) imaginary indices of refraction m for liquid water also plotted for two 
sources, H&Q [32] and D&W [34].  

tances, respectively. Similarly, for a 12-µm droplet model 
(Fig. 3b), the maximum reflectance is 0.142 for the effective 
wavelength versus 0.130 for the solar weighted model. Thus, 
the retrieved value of re will be smaller using the solar-
weighted reflectances compared to that retrieved using the 
effective wavelength calculated reflectances. 

The sub-band weighting for ice is accomplished in a similar 
manner using the indices of refraction from [36] to compute 
the optical properties for ice spheres having the same effective 
radii as the ice crystal size distributions. The sub-band values 
were integrated to obtain a band average that is used to 
compute a normalization factor relative to the band average 
for the original ice crystal calculations. The ice-sphere sub-
band values were then adjusted with the normalization factor 
to obtain the sub-band ice crystal optical properties and the 
reflectances were computed for each sub-band using the AD 
model. The spectral integration and solar-weighting were 
performed in the same manner as for the liquid droplet 
models. The SIR reflectance LUTs are limited to τ < 32 since 
the reflectances asymptote to their maximum values at smaller 
optical depths for all of the considered particle sizes.  

The channel-3 effective emittances were determined in a 
similar manner using the same sub-bands. In this instance 
(Fig. 2b), the blackbody curve of the cloud temperature (not 
shown) substitutes for the solar-spectrum to weight the 
absorption and emission computed for each sub-band in the 
final integration over the response function. The results were 
used to compute the model effective emittances for each 
particle size, optical depth, and pairs of surface and cloud  

 
Fig. 3. Reflectances computed for the MODIS 3.78-µm channel and sub-
bands for a liquid water cloud. Ch 3 denotes calculations for effective 
wavelength. 

temperatures, and to develop the emittance parameterizations 
as in [30]. 

III. METHODOLOGIES 
As shown in Fig. 4, the CPRS selects one of three methods 

to retrieve cloud properties based on the SZA and the surface 
type. A tile is considered to be in daylight if SZA < 82°. 
Although pixels having SZA between 82° and 90° are 
technically in daylight, they are processed with the nighttime 
retrieval algorithm including all modeled solar reflectances 
where appropriate. For a given tile, the atmospheric 
attenuation is first computed for every layer and channel for 
use in any of the techniques, except where noted otherwise. 
The appropriate parameterizations are then employed to 
estimate the TOA spectral radiances for each pixel based on 
the surface albedo or skin temperature and emissivity and the 
atmospheric attenuation parameters. Each method iteratively 
finds the best match between the model-predicted and 
observed radiances to determine the cloud phase, cloud 
effective radiating temperature Tc, cloud effective height Zc, τ, 
and the effective particle size r, which can be either radius re 
or diameter De, depending on cloud phase. The ice water path 
IWP and liquid water path LWP are computed as functions of 
the products of τ and the appropriate effective particle size. 
Using adjusted MOA temperature profiles and empirical fits 
for cloud base, the algorithm computes the effective cloud 
pressure pc, cloud-top height Zt and pressure pt, and cloud-base 
height Zb and pressure pb. 

A.  Atmospheric absorption and emission corrections 
The atmospheric absorption and emission corrections are 

primarily based on calculations using the correlated k-
distribution method (CKD) [37] with coefficients developed 
for the VIRS and MODIS channels used here (see [38] and 
http://asd-www.larc.nasa.gov/~kratz/). The NIR atmospheric 
corrections are discussed in section III.B.4.  

1) VIS absorption: For the VIS channel, only ozone and 
water vapor absorption are considered although there are a few 
other absorbing species with negligible impact. All ozone 
absorption is computed using the same approximation as in  



TGRS-2009-00903.R1 
 

7 

 
Fig. 4. Overview of CERES Cloud Property Retrieval System (CPRS) in Box 
O from Fig. 1. 

[32] and, although assumed to occur in the stratosphere above 
any clouds, the ozone concentration u is computed in cm STP 
for the layer between the TOA and 300 hPa. Thus, the ozone 
transmittance is  

 
tO3 = exp-{u (0.085 – 0.00052 u) (1/µo + 1/µ)}.    (9) 
 
Further analysis after Ed2 processing began revealed that 

(9) overestimates the ozone optical thickness for the MODIS 
VIS channel by 13%, causing average overestimates of τ that 
increase exponentially from 1% or less for µ o > 0.50 up to 
50% or more for µ o < 0.12. Thus, these biases become 
significant only for large SZAs and mainly affect the optical 
depths over high-latitude snow-free areas. 

A parameterization of water vapor transmission tW1j was 
developed for channel 1, based on radiative transfer 
calculations using the CKD method, to compute the 
cumulative layer water vapor transmissions starting from the 
top of the atmosphere and working downward toward the 
surface: 

 
tW1j = 0.9999 – 0.0046 uwj + 0.00007 uwj

2,    (10) 
 
where the atmospheric path length is  
 
uwj = PWj (1/µo + 1/µ),           (11) 
 

and PWj is the precipitable water in atmosphere-cm. The 
subscript j denotes the layer from the TOA to pressure level j 
in the atmospheric profile. The total VIS atmospheric 
transmittance for layer j in the troposphere is the product of tO3 
and tW1j. Water vapor absorption below the cloud is ignored. 
Atmospheric molecular scattering is taken into account in the 
VIS reflectance parameterization. All aerosol scattering is 
assumed to occur below the cloud and is implicitly included in 
the surface reflectance and albedo.  

2) Thermal channels: The atmospheric transmittances for 
channels i = 3 – 5 are calculated in a common manner for each 
tile, except that the SIR solar beam transmittance is computed 
separately from the atmospheric radiances and the VIRS SIR 
band is broken into 5 sub-bands, while only a single band is 
used for MODIS because it is much narrower [38]. The CKD 
method again is used to compute the layer optical depths τij, 
and the transmittances and emitted radiances for each 
cumulative layer are computed starting at the TOA and 
working downward. The downwelling emitted radiances LDij 
and transmissivities tDij are computed as cumulative diffuse 
radiances from the TOA to the base of layer j, using the 
radiance at µ = 0.6, while the upwelling transmissivities tUij 
and radiances LUij are computed only in the VZA direction, 
starting at the surface and working upward to the TOA, where 
they are designated with the subscript o. The surface is 
denoted with the subscript j. The downwelling SIR solar 
component is computed in the SZA direction, µo, using as the 
source term, the solar constant at 3.8–µm adjusted for the 
Earth-Sun distance and SZA. The nominal values of the SIR 
solar constants Eo, 10.51 and 10.77 W m-2 µm-1 sr-1, for VIRS 
and MODIS, respectively, are based on the spectrum of 
Kurucz [35]. The uncertainties in Eo are roughly 5%, a value 
that translates to potential errors in re and De of 0.5 and 1.5 
µm, respectively [39]. The CKD calculations include 
contributions from weak water vapor lines for all 3 channels, 
chlorofluorocarbons for VIRS 10.8 and 12.0 µm, the water 
vapor continuum for 10.8 and 12.0 µm, CO2 for MODIS 10.8 
and 12.0 µm, and CH4 and N2O for 3.8 µm. The Planck 
function evaluated at the central wavelength for each channel 
(Table II) is used to convert temperature to radiance and vice 
versa. The layer optical depths are computed for the entire 
band.  

B. Parameterizations of TOA reflectance and brightness 
temperatures 
1) Visible reflectance parameterization: In the initial 

formulation of VISST used in VIRS Ed 1, the VIS reflectance 
was estimated using the parameterization developed by [32]. 
Further examination of that method found some relatively 
large errors over bright surfaces at certain angles. To improve 
the accuracy of the modeled VIS TOA reflectance for clouds 
over dark and bright surfaces, a new parameterization was 
developed using the results from a detailed adding-doubling 
(AD) radiative transfer model [32]. This parameterization is 
based on the AD equations using the LUTs developed in [30] 
for the diffuse cloud albedo αcd(τ, r), cloud albedo αc(τ, r, µo), 
and the cloud reflectance ρc(τ, r, µo, µ, φ), where τ and r are 
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the cloud visible optical depth and effective particle size, 
respectively. The parameterization also uses the LUTs of 
atmospheric reflectance ρR(τR, µo, µ, φ), albedo αR(τR,µo), and 
diffuse albedo αRd(τDR,µo) due to Rayleigh scattering [32]. It 
assumes that the atmosphere is divided into three layers with a 
lower surface. The top layer, designated layer 1, and layer 3 
are Rayleigh scattering layers, while layer 2 is the cloud layer.   

The reflectance for two adjacent layers is computed using 
the adding equations. These are then added to the third layer to 
yield the combined model surface and atmosphere TOA VIS 
reflectance Ras. Since the adding process is only approximated 
in this parameterization, there are residual differences between 
the AD model results and the initial parameterizations. These 
differences ΔR were parameterized further in terms of the 
scattering angle and used to adjust Ras to estimate the TOA 
reflectance,  

 
RTOA = (Ras + ΔR) exp(-τgas(1/µ + 1/µo)).       (12) 
 
The exponential term accounts for gaseous absorption 

above the cloud and, in practice, varies with the altitude of the 
cloud. This formulation does not explicitly account for any 
aerosols; the surface albedo and reflectance are actually more 
representative of the surface and aerosols combined. Appendix 
A describes the parameterizations in detail. 

When used for retrievals, the values of ΔR are computed for 
the specified values of αsd, pc, and r by linear interpolation and 
extrapolation between the values used to create the 
coefficients for (12). This equation was tested for wider ranges 
of various cloud models, surface albedos, and cloud pressures 
than were used in the formulation of the parameterization. The 
resulting relative differences between (12) and the AD 
calculations for those cases plus the original cases used in the 
formulation are summarized in Appendix A. 

2) Infrared brightness temperature parameterization: The 
simple model of brightness temperature used here is that, for a 
cloud at some layer j within the atmosphere, the observed 
radiance for channels i = 3 - 5 can be represented as 

 
Bi(Ti) = LUio – LUij-1           

   + tUio{[1-εi(τi,r;µ)][(1 - εsi)( LDiJ - LDij)      
    + εsi Bi(Ts)]+ εi(τi,r;µ) Bi(Tj) / tUij-1},     (13) 

 
where Ti is the equivalent blackbody temperature, Tj is the 
cloud effective radiating temperature, B is the Planck function, 
εsi is the surface emissivity, and the effective cloud emittance 
εi approaches unity as the cloud becomes optically thick. The 
first two terms represent the radiance contributed by the 
atmosphere above the cloud; LUio is the upwelling radiance 
from the surface to the TOA and LUij-1 is upwelling radiance 
from the surface to the base of the cloud in layer j. The third 
term includes the radiances from the cloud and the surface 
attenuated by the atmosphere. The downwelling radiation 
from the cloud is neglected. The upwelling transmissivities 
from the surface to the TOA and the surface to the cloud base 
are tUio and tUij-1, respectively. The downwelling radiance from 

the atmosphere reaching the surface is given by  LDiJ - LDij, 
where the first and second terms are the downwelling 
radiances at the surface for the atmospheric column and at 
cloud top, respectively. The downward transmittance of the 
cloud and surface reflectance are approximated as the 
quantities, [1-εi(τi,r;µ)] and [1 - εsi], respectively. Given the 
cumulative transmissivities and atmospheric radiances 
computed for a given tile, it is possible to quickly compute 
Bi(Ti) for a model cloud placed at any height providing the 
means to iteratively solve for Tc as discussed in Section C 
below. 

If scattering in the cloud is neglected, 
 
εai = 1 - exp(-τai / µ ),         (14) 
 

where the absorption optical depth τai = (1 - ϖo)τi and ϖo is the 
single-scattering albedo. As noted earlier, Ts is taken either 
from the MOA dataset or from the clear portion of the tile.  

3) Shortwave infrared brightness temperature 
parameterization during daytime: The use of the SIR data 
during the daytime complicates (13) because of solar 
reflectance at those wavelengths.  The observed radiance has 
an additional term: 

 
B3(T3) = L3’ + µo do Eo tU3o tD3J ρc3,       (15) 
 

where L3’ is computed with (13), do is the Earth-sun distance 
correction, and the combined surface and cloud reflected 
component is  

 
ρc3 = [ρ3(τ, r;µο, µ,φ) / tU3j-1] + [tD3o / tD3J] [1 – εa3 –    

   αc3(τ,r;µo)] ρ’,              (16) 
 

where  
ρ’ = [1 – εa3 – αc3(τ,r;µ)] ρs3(µo,µ,φ) + [1 – αcd3(τ,r) –   

   εad]αcd3(τ)αsd3
2,              (17) 

 
and αc3, αcd3, and ρ3, from the channel-3 reflectance LUTs, 
represent the cloud albedo for a given incident angle, the 
diffuse cloud albedo, and the cloud bidirectional reflectance, 
respectively. The first term in (16) accounts for the reflectance 
directly from the cloud, while the second term accounts for the 
contribution of the surface to the reflectance. It is 
approximated as a combination of primary and secondary 
surface reflectances. The primary assumes reflectance of the 
direct beam in the direction of the sensor and the secondary 
assumes that the second reflectance is diffuse and reflects the 
radiation originally reflected by the surface and scattered back 
by the cloud. Since the secondary term is usually very small 
relative to the first term, it and higher order reflectances were 
neglected in the VIRS, Terra, and Aqua Ed2 cloud analyses. 

4) Near-infrared reflectance parameterization: Since the 
atmospheric scattering at NIR wavelengths is negligible and 
all aerosol reflectance is assumed to occur underneath the 
cloud, the formulation for the model is simpler than that for 
either the VIS or SIR channels. The theoretical TOA NIR 



TGRS-2009-00903.R1 
 

9 

reflectance, which was formulated to match AD radiative 
transfer computation results over a wide range of conditions, 
is approximated as 

 
ρ2 = ρ2c (m,τ,µo,µ,φ) exp(-τ2a1 [1/µo +1/µ])   
    + αs2 exp(-(τ2a1 [1/µo +2.04] + 4.08 τ2a2))      

     (1 – α2cd – A2cd)  (1 – α2c –A2c).       (18) 
 
The first term is the direct bidirectional reflectance of the 

model cloud attenuated by the atmosphere above the cloud, 
corresponding to the atmospheric absorption optical depth for 
layer 1, τ2a1. The second term represents the contribution of 
the surface to the TOA reflectance and only includes two-way 
diffuse absorption by layer 2 under the cloud, τ2a2. For snow-
covered regions, the second term is typically negligible 
because the NIR surface albedos are often less than 0.1 [19]. 
The atmospheric absorption at NIR wavelengths is due to 
weak water vapor, CO2, CH4, and, at 2.1-µm only, N2O bands. 
The total atmospheric column optical depth at 1.6 µm varies 
from ~0.021 in a subarctic winter atmosphere to ~0.024 in a 
tropical atmosphere. Thus, a simple parameterization was 
developed to estimate the atmospheric absorption as a function 
of latitude for different levels in the atmosphere. The 2.1-µm 
atmospheric absorption optical depth is greater and can range 
from ~0.05 in a subarctic winter atmosphere up to ~0.16 in a 
tropical atmosphere. The absorption optical depths are 
computed explicitly at 2.1 µm for each tile using the CKD 
method. Unfortunately, in the Aqua Ed2 algorithm, the 1.6-µm 
atmospheric absorption optical depths were mistakenly used 
for the 2.1-µm retrievals. This error causes an underestimation 
of the retrieved optical depths. The extent of the bias is 
explored in [17]. 

C. Retrieval techniques for cloud temperature, phase, 
optical depth and particle size  
1) VISST: The iterative process employed by the VISST is 

shown schematically in Fig. 5. It is much like the approach 
pioneered by Han et al. [39] for deriving liquid water cloud 
microphysical properties from AVHRR data and was initially 
formulated and applied to AVHRR data for both ice and liquid 
water clouds by Minnis et al. [40] and Young et al. [41]. The 
IR, VIS, and SIR radiances are primarily sensitive to changes 
in Tc, τ, and re, respectively, a basis used for a variety of 
similar techniques [13, 39, 42, 43]. Nominally, for a given 
pixel, the iterative process is performed for each phase, 
beginning with an initial guess of re’ = 8 µm and Tc = T(Z = 3 
km) for liquid clouds and De = 45 µm and Tc = T(Zc = 9 km). 
However, if T4 < 233 K, it is assumed that the pixel contains 
an ice cloud and only the ice loop (A) is executed.  

Values of RTOA are computed for each case using (12) and 
interpolated to match the observed VIS reflectance to yield τ 
and ε4, which is then used to recompute Tc with (13). These 
parameters are then used to compute T3’ using (15) for each 
particle size model, yielding minimum and maximum values, 
T3min’, and T3max’, respectively. If it is the first iteration and the 
observed value, T3, is either smaller than T3min’ or greater than 
T3max’, the assumed particle size is reset to the maximum or 

minimum particle size, respectively, and τ and Tc are 
recomputed and the process is repeated in the second iteration. 
If T3 is outside of either model extreme after the first iteration, 
then it is assumed that no retrieval is possible with that set of 
models. If T3 is within the extreme model values during any 
iteration, then re is estimated by interpolating between the 
values of T3’ to match T3. For water clouds, if |re – re’| < 0.5 
µm, the iteration stops, otherwise a new value of re’ is 
computed as the average of re and the original re’, and the 
process is repeated. A no-retrieval value results if convergence 
does not occur after 20 iterations. The same procedure is used 
for the ice clouds, except that the ice crystal models replace 
their water droplet counterparts and the iteration stops when 
|De – De’| < 2.5 µm.  

The cloud thermodynamic phase is selected using a set of 
sequential tests. These are illustrated in Figs. 6-7 for the Aqua 
Ed2 algorithm. If the observed reflectance is less than the 
clear-sky value, it is likely a no-retrieval pixel and is assigned 
the mean layer results (depending on T4), if it is not 
reclassified as clear (Fig. 6). This assignment is given on the 
assumption that it is a shaded cloud. If there is only one phase 
solution and Tc is physically reasonable, the phase is accepted 
for that solution. If Tc is unreasonable, then it follows the same 
path as the no solution case. If there are dual phase solutions, a 
simple temperature check is applied: if Tc > 273 K (< 233 K) 
for both results, the liquid (ice) solution is used, unless the ice 
cloud is over snow. Otherwise, a more complicated series of 
tests are applied. These further tests incorporate results from 
two other separate algorithms, the Layer Bispectral Threshold 
Method (LBTM) [44] applied in less than 5% of the cases and 
a supervised classifier (denoted as UAH) based upon a back-
propagation neural network [45], which is used less than 2% 
of the time during the day and ~10% of the time at night. The 
latter provides an independent assessment of cloud and surface 
type and is primarily used over snow surfaces. The former 
uses a two-dimensional VIS-IR histogram to provide an 
estimate of the cloud layer that includes the pixel. It also 
determines a parameter, designated “hi_cold”, that indicates 
whether or not there is at least one pixel in the high layer 
having T4 less than the warmest pixel in the low cloud layer. 
This parameter is used to reclassify thin cirrus pixels that 
would otherwise be called liquid cloud pixels. It was 
introduced to minimize such classifications, which occurred in 
the Terra Ed2 results at certain viewing and illumination 
angles. The remaining tests shown in Figs. 6 and 7 make use 
of the LBTM and UAH output, the particle sizes, Tc, τ, and the 
surface types to arrive at a final solution. The Terra Ed2 
algorithm follows a similar flow but it does not employ the 
LBTM results. It uses the ratio of the 1.6 and 0.65-µm 
reflectances to aid the phase selection. Note, that values for 
no-retrieval pixels (positive terminus in upper left section of 
Fig. 6) are assigned conditionally in a separate set of 
algorithms described briefly in Section V.F. 

Figure 8 shows an example of the VISST pixel-level results 
for Terra MODIS data taken over western North America and 
the adjacent Pacific Ocean at ~21 UTC, 12 June 2004. The 
pseudocolor red (VIS), green (NIR), blue (IR) or RGB image 
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Fig. 5. Flowchart of VISST analysis process. 
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Fig. 6. Phase selection algorithm for Aqua Ed2 daytime retrieval algorithm. 

(Fig. 8a) shows a complex scene with low clouds over much 
of the water, high clouds over the northern part of the image 
and a mixture of high and low clouds over land. Sunglint is 
apparent off the coast of southern California between cloud 
decks. The phase image (Fig. 8b) shows the liquid water 
clouds in blue, ice clouds in white, clear areas in green, and no 
retrievals in pink. Effective temperatures (Fig. 8c) for the ice 
clouds range from 215 to 260 K, while Tc for the liquid clouds 
varies from 294 K to less than 265 K. The retrieved values of 

De (Fig. 8d) are between 15 and 100 µm, compared to a range 
of 6 to 27 µm for re (Fig. 8e). The largest values of re are over 
the water, while the smallest values of De tend to occur where 
the ice clouds appear to overlap lower clouds. This type of 
variation is expected if the high cloud is optically thin because 
the reflected SIR radiance from the low cloud will yield an 
underestimate of De [46]. The retrieved optical depths (Fig. 
8g) vary from slightly less than 0.5 up to the maximum of 128. 
The resulting LWP ranges up to ~500 gm-2, while the IWP is 
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Fig. 7. Further phase determination logic for Aqua Ed2 algorithm called from within the main decision tree in Fig. 6: (b) ice cloud likely check. 

as large as 1500 gm-2 for some pixels near the top of the image 
(Fig. 8h). For overlapped clouds, the IWP is an estimate of the 
total cloud water path TWP, which includes both ice and 
water. Typically, it overestimates TWP [46]. The cloud 
effective height Zc (Fig. 8f) and effective pressure pc (Fig. 8i) 
are estimated from Tc as described in section III.E. 

2) SIST: The primary goal of the nighttime retrievals is to 
adjust cloud temperature and, hence, the height for semi-
transparent clouds to provide some consistency between day 
and night. Although the SIST derives particle size and optical 
depth for clouds it identifies as optically thin, those parameters 
are considered to be experimental and are only included in the 
output for future study. The theoretical basis and heritage of 
the SIST and relevant references are provided by [15]. The 
SIST relies on the brightness temperature differences (BTD) 
between channels 3 and 4 (BTD34) and between channels 4 and 
5 (BTD45) to solve for Tc, τ, and re or De. The performance of 
the SIST relative to the VISST is discussed by [17]. 

Given an optically thin cloud (τ < 6), µ, and the background 
(theoretically, it can be either clear or cloudy below) 
temperatures for channels 3, 4, and 5, it is assumed that a 
given pair of BTD34 and BTD45 at a particular value of T4 
uniquely defines a cloud characterized by Tc, re or De, and τ. 
These parameters are determined by matching the three 

measured quantities as closely as possible to the same 
parameters calculated using (13). Each observed quantity 
should fall between the corresponding pair of discrete 
theoretical calculations for a given phase. The distance in BTD 
from the model value to the observed value for both channels 
3 and 5 is used to interpolate between each model and 
parameter to assign a value of Tc, re or De, and τ to the pixel. 
In the absence of temperature constraints (Tc > 273 K or Tc < 
233 K), the phase is selected based on how closely the channel 
3 and 5 parameters agree with each other.  

This technique attempts to determine τ, Tc, and particle size 
through an iterative process that minimizes the differences 
between model-derived and observed values of BTD34 and 
BTD45 for the observed T4. This procedure, illustrated 
schematically in Fig. 9, begins with input values of µ and Ts 
and assumes an initial value of Tc = T'(k), where T'(k) < T4 and 
k is an index corresponding to the emittance model for a 
particular particle size and phase. The first guess temperature 
is equal to 0.5(T4 + 183). For each of the channel-4 emittance 
models, τ[T'(k), k] is determined using a secant iteration 
method to match T4. The iteration is confined to temperatures 
between T4 + 3 K and Tp – 2 K, where Tp is the tropopause 
temperature. The arrow in Fig. 9a represents this process. The 
resulting value of τ is used to compute T3 and T5 using the 
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Fig. 8. Cloud properties derived by applying the VISST to daytime Terra MODIS data taken over western North America and the eastern Pacific, 21 UTC, 12 
June 2004. (a) RGB image, (b) Phase, (c) Tc (K), (d) De (µm), (e) re (µm), (f) Zc, (g) τ, (h) ice/liquid water path (g m-2), (i) pc (hPa). 

channel-3 and 5 emittance models in (13). The model values 
of BTD34[T'(k), k] and BTD45[T'(k), k], shown as the 
intersections of the model curves and dashed line in Fig. 9a, 
are calculated from the model-derived temperatures and T4. 
Difference errors, e34 = BTD34 - BTD34[T'(k), k] and e45 = 
BTD45 - BTD45[T'(k), k], are computed for each model. The 
composite error,  

 
 e[T'(k), k] = e34

2 + e45
2,        (19) 

 
is minimized in the iteration process. These operations are 
repeated varying T'(k) as illustrated in Fig. 9b until e(Tnew, re) 
is minimized yielding the best estimate of cloud temperature 
for model k. In the first iteration, T'(k) is increased by 10 K for 
each step until e begins to increase. Figure 10a depicts how e 
can vary with increasing T'(k). Subsequent iterations repeat the 
error calculations using increasingly smaller temperature 
increments bounded by the last two temperatures used in the 
preceding iteration. The iterations continue until the increment 
is less than 0.1 K or up to 15 times. In the latter case, the 
results from the penultimate iteration are accepted. If the 

resultant optical depth exceeds 16, then τ is reset to 16. For the 
case in Fig. 10a, the value of Tc(k) corresponds to the 
minimum error. This entire procedure is repeated again for 
each model producing final values of e[T'(k), k] as shown in 
Fig. 10b. In practice, the algorithm begins with the smallest 
model for the phase and continues until e34 and e45 switch 
signs, which indicates that the observation is between the 
previous two models. One of the two models, kmin1, will have 
the smallest value of e for the particular phase, while the other 
model, kmin2, should also have a relatively low error. These 
two models are then selected for interpolation. If Tc > 273 K 
or < 233 K, only the water-droplet or ice-crystal models, 
respectively, are used.  

Final values of re or De, Tc, and τ are computed for channel 
3 by linearly interpolating between re(kmin1) and re(kmin2), 
Tc(kmin1) and Tc(kmin2), and τ(kmin1) and τ(kmin2), respectively, 
using e34[T'(kmin1), kmin1] and e34[T'(kmin2), kmin2] as the 
independent variables. The same interpolation is repeated for 
channel 5. The resultant values for the two channels are 
averaged to obtain the best estimate of each parameter. If both 
phases are considered, then the results for the phase having the  
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Fig. 9. Schematic illustration of SIST iteration process for nocturnal retrievals. 
(a) Step 1, compute errors for model k using first guess temperature. (b) Step 
2, compute errors for second temperature estimate. 

smallest uncertainty, 
 

e35 = (

€ 

Tc3 −Tc5
Tc3

)2
 + (τ3 - τ5

τ3  )2
 + (re3 - re5

re3  )2
, 

                       (20) 
 

are selected for the final parameter values.  The subscripts 3 
and 5 refer to the parameter values derived using channel 4 
with channels 3 and 5, respectively. The most accurate 
estimates of Tc are obtained for the larger optical depths (τ > 
6), while the most accurate values of τ and re should occur for 
1 < τ < 6. There is little variation in BTD with particle size for 
small and large optical depths. This method was tested using a 
limited set of simulated data with superimposed noise. In these 
cases, the retrieved particle sizes were within 0.1 µm of the 
simulated cloud values and the phase was chosen correctly.  

Although a comprehensive analysis of errors in the SIST is 
beyond the scope of this paper, additional tests of the 
sensitivity of the retrievals to input values of surface 
temperature, surface emissivity, and relative humidity were 
performed using a standard tropical atmosphere with ice 
clouds having Tc = 250 K and 230 K. The surface emissivities 
for channels 3, 4, and 5 were specified as 0.98, 0.98, and 0.98, 
respectively, for the tropical cases. The surface temperatures,  

 
Fig. 10. Schematic diagram of minimum error estimation to determine most 
likely particle size models. (a) Determining minimum error for a given 
particle size model. (b) Determining model having minimum error. 

11-µm surface emissivities, and column relative humidities 
were perturbed by + 2.5 K, 0.02, and 15%, respectively, and 
used to perform the retrievals at VZA = 25° and 55° for ice 
clouds having De = 40 and 80 µm. The 0.02 εs perturbation 
roughly corresponds to a 1.5 K change in Ts. The simulated 
retrievals used a set of lookup tables during the iterative 
procedure. Figure 11 shows the results for the surface 
emissivity perturbations using Tc = 250 K. The optical depth 
errors, Δτ/τ, are greatest for τ < 0.1, switch signs as τ rises and 
hit another peak at τ ~ 0.4, then decrease, approaching zero, 
becoming a little unstable for τ > 3. This instability in the 
results for τ > 3 is due to some non-monotonic changes in 
BTD34 as a function of De and the decreasing separation 
between the particle size models as τ becomes larger than 3 
(e.g., Fig. 15 of [30]), i.e., the information content is minimal. 
The maximum errors for τ < 3 are slightly smaller at θ = 55° 
than at θ = 25° and for De = 80 (Fig. 11b) compared to De = 40 
(Fig. 11a). Underestimates of εs yield much smaller errors in τ 
than the positive perturbations.  

The retrieved particle size errors, ΔDe/De, in Figs. 11b and 
11d are much more sensitive to uncertainties in εs. The 
negative perturbations yield errors of 2 for τ < 1.0, decreasing 
to ~0.7 for τ > 1 and De = 40 µm. The positive perturbations 
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Fig. 11. Sensitivity of retrieved optical depth, ice crystal effective size, and Tc to errors in surface emissivity for Tc = 250 K in a standard tropical atmosphere. 

yield underestimates of De of almost 100% for τ < 0.1 for De = 
80 µm, decreasing to ~0.1 for τ > 1.5. For De, the errors follow 
a similar, but offset curve, but lose convergence for τ > 2. In 
all cases, the results are unstable for τ > 3. The effective cloud 
temperature errors, ΔTc/Tc, in Figs. 11c and 11e are much 
better behaved, converging to the correct value without 
instabilities. For very small optical depths, the perturbations 
yield errors of -0.15 or so, dropping to absolute values less 
than 0.05 for τ > 0.8 or so. A 0.05 Tc error translates to 12.5 K 
for Tc = 250 K. The 2.5 K perturbations in Ts and 15% 
uncertainties in RH yield larger and smaller errors, 
respectively, than those in Fig. 11. For Tc = 230 K (not 
shown), the errors in all parameters increase for τ < 0.3 and 
decrease more slowly with τ. 

Since the primary goal of using the SIST is to obtain a 
better estimate of Tc for thin cirrus and few clouds having τ < 
0.3 are detected, the practical sensitivity of Tc to a 0.02 change 
in surface emissivity varies from +8% to -5% at τ = 0.3 down 
to roughly +1% or less at τ = 3 for Tc = 250 K, with the exact 
value depending on VZA, particle size and Tc. At Tc = 230 K, 
the errors in surface emissivity vary from +11% to -8% at τ = 
0.3 down to roughly +2% or less at τ = 3. The emissivity 
errors used in Fig. 11 are typically much greater than the 
average differences in εs at 11 µm for the εs two different 
datasets derived from MODIS data: the CERES values [47] 
and those derived by other researchers using MODIS data, 
e.g., [48]. While the 11-µm surface emissivity differences are 
typically 0.01 or less, larger differences are found over desert 
areas [47]. Thus, except over deserts, the impact of using 
either dataset would result in differences less than half of 
those in Fig. 11. Uncertainties in the predicted nocturnal Ts 
over land are larger than 2.5 K [23], thus errors in Ts are more 
significant than those in surface emissivities. Because of 
uncertainties in the various parameters, the overall errors in 
the SIST are best evaluated by comparing with reliable 
independent measurements of Tc or Zc, e.g., [17].  

The iteration procedures comprise only one part of the 

complete SIST, which is illustrated schematically in Figure 
12. Given the input parameters, it is first determined if the 
cloud is colder than its background. If T4 > Ts, a set of default 
values are applied. Otherwise, the input parameters are 
checked to see of the cloud is likely to be optically thick based 
on BTD34 and, if so, a phase is selected based on the 
temperature. The threshold for determining whether it is 
optically thin or thick is 

 
  ΔT34 =  0.095 (T4 – Ts) – 4.175.      (21) 
 
This formula was derived from a set of radiative transfer 

computations using a wide range of particle sizes and a range 
of optical depths up to 16. A relatively conservative threshold, 
it does not eliminate all clouds having τ > 16 and is imposed 
mainly to facilitate processing. The clouds determined to be 
thick at this point are given a default value of τ = 32. If BTD34 
> ΔT34, then the iterative procedures are applied either using 
one phase or both. If solutions for both phases are determined, 
then the final model selection depends on e35 as noted earlier. 

 Figure 13 shows an example of the retrieved properties 
from the SIST for an Aqua image taken over the North 
Atlantic (the Azores are located in lower center of the image) 
at ~23 UTC, 22 May 2004. The RGB image (Fig. 13a), based 
on T4, T5, and BTD34, reveals a swath of high clouds associated 
with a frontal system at the bottom and low clouds with 
broken overlapping high clouds north of the frontal system. 
Most of the apparent high clouds are identified as ice clouds in 
the phase image (Fig. 13b). For the ice clouds, Tc varies from 
205 to 257 K (Fig. 13c), while it is between 253 and 280 K for 
most of the water clouds. The resulting values of De (Fig. 13d) 
range from less than 18 to 135 µm, the maximum possible 
value. The maximum and minimum model values occur in a 
variety of conditions, particularly when τ is very low or high 
or in multi-layered clouds. Default values of De = 24 or 64 µm 
are evident over many areas, while non-extreme retrieved 
values are mostly associated with 0.5 < τ < 2 (Fig. 13g). The 
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Fig. 12. Flow diagram of SIST used for cloud property retrievals during nighttime and twilight conditions. 

extreme values tend to occur outside this range of τ because 
De is sensitive to small errors in the atmospheric corrections 
and background temperatures at smaller and larger values of 
τ as seen in [15]. Most of the water droplet clouds yield re 
between 7 and 14 µm (Fig. 13e). The larger values are mostly 
default values of re = 12 µm, corresponding to τ = 32 (red in 
Fig. 13g).  

3) SINT: The Shortwave-infrared Infrared Near-infrared 
Technique (SINT) is based on the method pioneered by 
Platnick et al. [16]. It is applied when the VIS clear-sky 
reflectance is extremely high, i.e., when the surface is covered 
with snow and/or ice. Determination of the background 
surface as snow or ice comes either from the scene 
classification for adjacent clear pixels or from snow and ice 
maps. Because snow and ice are not very reflective at NIR 

wavelengths, the NIR channel replaces the VIS channel in the 
iteration used by the VISST, effectively serving as the channel 
responsive to changes in cloud optical depth. The SIR channel 
is still used to retrieve the effective particle size. Thus, the 
iteration follows that in Fig. 5 with all VIS reflectances 
replaced by their NIR counterparts using the parameterizations 
and atmospheric corrections described earlier. The phase 
selection is the same as for the VISST except no information 
is available from the LBTM or the NIR/VIS ratio.  

Figure 14 presents an example of the SINT retrievals using 
Terra MODIS data taken over the Arctic Ocean and part of 
northern Canada at 23 UTC, 3 May 2005. The RGB image 
(Fig. 14a.) shows areas with various shades of magenta and 
red that usually correspond to snow or ice-covered surfaces. 
The peachy or yellowish colors are usually due to low clouds, 
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Fig. 13. Cloud properties derived by applying the SIST to nighttime Aqua MODIS data taken over the North Atlantic, 23 UTC, 22 May 2004. (a) RGB image, 
(b) Phase, (c) Tc (K), (d) De (µm), (e) re (µm), (f) Zc, (g) τ, (h) ice/liquid water path (g m-2), (i) pc (hPa). 

while the whiter areas are generally colder liquid or ice clouds. 
Most of the cloudy pixels (Fig. 14b) were interpreted as being 
composed of liquid droplets (blue) while the optically thinner 
clouds (Fig. 14g) were retrieved as ice clouds (white). The 
values of Tc range from 243 to 269 K (Fig. 14c) indicating that 
all of the clouds could be comprised of supercooled liquid 
droplets. The effective ice diameter values (Fig. 14d) vary 
from less than 18 µm to more than 109 µm, while re is 
generally between 6 and 16 µm. The overlap in particle size 
between the ice and liquid clouds suggests that some of the ice 
clouds could actually be liquid or vice versa, or mixed phase. 
These potentially ambiguous phase results are typical for 
optically thin clouds over snow. The values of Zc (Fig. 14f) 
and pc (Fig. 14i) indicate that the liquid clouds are quite low, 
being mostly above 900 hPa and below 1 km in the top half of 
the image. The ice clouds may be as high as 6 km 
corresponding to pc < 500 hPa. Cloud optical depth ranges 
from 0.5 to 32, while the corresponding cloud water paths 
(Fig.14h) reach up ~500 gm-2.  

In Fig. 14h and other panels, some areas appear as clear 
rectangles in obviously cloudy areas. These are regions where 

the ice/snow map was read improperly and the surface was 
classified as free of snow and ice, but the background albedo 
was that of permanent snow and ice. Thus, the VISST was 
used and all the observed VIS radiances were less than the 
clear-sky predicted values, so no retrieval could be performed 
and the tile was classified as clear. This snow-ice map 
mismatch was mainly a problem for Terra Ed2a and was 
reduced significantly for Aqua Ed2.  

D. Cloud water paths 
The values of IWP and LWP are computed based on the 

assumption that the retrieved effective particle sizes represent 
the average over the entire cloud thickness. For liquid water, 

 
 LWP = 4 re τ / 3Q,          (22) 
 

where the extinction efficiency Q ranges from 2.03 to 2.19 for 
re ranging from 32 to 4 µm [30]. The IWP was computed for 
each De model using the ratios of the cross-sectional areas to 
volumes in Table 2 and the values of Q found in Table 8 of 
[30]. A cubic equation was fit to the results yielding a smooth 
function in terms of De with an rms error of 1%:   
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Fig. 14. Cloud properties derived during daytime by applying the SINT to Terra MODIS data taken over north central Canada and the adjacent Arctic Ocean, 23 
UTC, 3 May 2005. (a) RGB image, (b) Phase, (c) Tc (K), (d) De (µm), (e) re (µm), (f) Zc, (g) τ, (h) ice/liquid water path (g m-2), (i) pc (hPa). 

 
IWP =  

  τ (0.259 De + 0.819 x 10-3 De
2 – 0.880 x 10-6 De

3). (23) 
 
E. Cloud heights and pressure 
Several different cloud heights and pressures are derived to 

estimate the vertical extent of the detected clouds. These 
parameters are cloud effective height and pressure, cloud-top 
height and pressure, cloud thickness, and cloud base height 
and pressure. 

1) Cloud effective height: The cloud effective height Zc and 
pressure pc are defined as the lowest altitude and 
corresponding pressure, respectively, where Tc is found in the 
profile. Vertical profiles of temperature and pressure measured 
by radiosondes and output from NWAs often fail to miss the 
extreme temperature changes near the tops of the boundary-
layer inversions [49-52]. The results typically overestimate 
cloud-top height for low clouds because the cloud-top 
temperature observed by the satellite is often found higher in 
the temperature profile than at the actual location of the 
boundary-layer inversion. To overcome this sounding bias 

when relating cloud temperature to altitude, the lower portion 
of the temperature profile in the CPRS is first adjusted based 
on the surface temperature and a fixed lapse rate.  

The temperature profile is adjusted using an adaptation of 
the techniques developed by [50, 53]. For p > 700 hPa, a 
simple lapse rate anchored to a surface temperature To is used 
to define the temperature profile. That is,  

 
T(z + zo) = To + Γ (z - zo),         (24) 
 

where zo is the surface elevation above mean sea level and Γ is 
the lapse rate. Over ocean and land surfaces, the value of To is, 
respectively, the sea surface temperature and the running 24-h 
mean surface air temperature from NWA reanalyses. 
Following Minnis et al. [50], Γ = -7.1 K km-1. Between 700 
and 500 hPa, Γ is adjusted to ensure that the resulting 
temperature at 500 hPa equals that in the NWA profile. For p 
< 500 hPa, the NWA vertical profile of atmospheric 
temperature remains unchanged. If To < Tc, then Zc is set, as a 
default, to 0.5 km above the surface elevation. The pressure 
corresponding to Zc is assigned to pc.  
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2) Cloud-top height: Because the value of Tc corresponds 
more closely to the center of the cloud in optically thin cases 
[54] and to some depth below the cloud top for optically thick 
clouds, e.g. [52], it differs from the actual physical top of the 
cloud. For cirrus clouds, a strong correlation was found 
between emissivity defined relative to the physical cloud-top 
temperature Tt and the cloud effective temperature [54]. Here, 
that type of relationship is used to estimate Tt and, thereby, the 
physical cloud-top height Zt and pressure pt from the 
temperature profile. In many cases, the value of Tt is found for 
channel 4 by substituting the cloud-top emissivity εt for ε4, Tt 
for Tc, and T4 for Ti in (12), then solving for Tt.  

For ice clouds having Tc < 245 K and τ < 2, the regression 
fit from Minnis et al. [55] is used to find εt: 

 
 εt = ε4 (2.966 - 0.009141 Tc).          (25) 
 
If εt > ε4, εt is set equal to ε4. If 2 < τ < 6, εt is found by 

linearly interpolating in τ between the result of (25) and ε4 
using τ values of 2 and 6 as the respective independent 
variables. For all clouds having τ > 6, εt = ε4. Similarly, for ice 
clouds having Tc > 245 K and τ < 2,  

 
 εt = ε4 (0.00753 Tc - 1.12).          (26) 
 
This equation is based on linear interpolation between the 

results of (25) and the water cloud values at 280 K. For other 
clouds having Tc > 245 K and τ > 2, εt is found in the same 
manner as for clouds having Tc < 245 K, except (26) is used in 
place of (25) for the interpolations. 

For liquid water clouds having τ > 6, εt = ε4. If τ < 2, εt = 
0.99 ε4. For clouds having 2 < τ < 6, εt is found by linearly 
interpolating in τ between the result of (25) and ε4 using τ 
values of 2 and 6 as the respective independent variables. This 
difference between εt and ε4 is very small for water clouds 
because the differences between the cloud top and effective 
heights for water clouds are usually less than 0.2 km, which is 
less than the accuracy of the height determination. 

 After the initial value of Tt is computed for clouds having 
Tc < 265 K, additional adjustments are made if 2 < τ < 6. A 
new value of Tt is found by linearly interpolating in τ between 
the original value of Tt and Tt

’ using τ values of 2 and 6 as the 
respective independent variables, where 

 
Tt

’ = 0.622 Tc + 77.7 K,         (27a) 
 

for Tc < 242 K and  
 
Tt

’ = 1.012 Tc – 14.0 K,         (27b) 
 

for 265 K < Tc < 242 K. If Tt
’ > Tc – 2 for Tc < 242 K, Tt

’ is 
reset to Tc - 2. The adjustments represented by (27) and the 
interpolations were developed from additional unpublished 
comparisons of surface radar and satellite-based cloud top 
temperatures. And finally, Tt is constrained to be less than or 
equal to the tropopause temperature. 

One final adjustment is made after Zt is determined from Tt 
to ensure that there is a reasonable depth to the layer above Zc 
in high clouds. If Zt > 6 km and Zt – Zc < 0.333 km, 0.5 K is 
subtracted from Tt and Zt is recomputed, Tt remains greater 
than the tropopause temperature. 

3) Cloud-base height and thickness: Cloud base height is 
estimated as Zb = Zt - ΔZ. The cloud base pressure pb is 
determined from Zb and the NWA vertical pressure profile. 
The cloud thickness ΔZ is computed in km using empirical 
formulae. For all liquid water clouds,  

 
ΔZ = 0.39 ln τ – 0.01,         (28) 
 

if τ > 1. Otherwise, 
 
ΔZ = 0.085 τ1/2.           (29) 
 

The minimum allowable ΔZ is 0.02 km. Equation (28) is taken 
from [56], while (29) is based on the results of [50]. For ice 
clouds with Tc < 245 K, 

 
 ΔZ = 7.2 - 0.024 Tc + 0.95 ln τ.       (30) 
 
This parameterization is a blend of the results from [56] and 

[57]. The minimum thickness for these clouds is also 0.02 km, 
with a maximum of 8 km. For ice clouds with Tc > 245 K, the 
cloud thickness is estimated by linearly interpolating in 
temperature between ΔZ for a liquid cloud at 275 K and for an 
ice cloud at 245 K.  

F. Pixel-level and CERES Single Scanner Footprint (SSF) 
Products 
The pixel-level data are convolved with the individual 

broadband CERES radiative fluxes to obtain the Single 
Scanner Footprint (SSF) dataset as described briefly by [1]. 
Figure 15 illustrates the structure of an SSF. When obtaining 
mean properties for each CERES footprint, each imager pixel 
is assigned a weight corresponding to the point spread 
function of the footprint. The weights are greatest near the 
pixel center and decrease outwards from the center in an 
asymmetrical fashion. The weights are used in computing 
cloud fraction and all other associated parameter values within 
the footprint. In addition to a wide range of radiative 
parameters and ancillary information, the SSF includes the 
cloud fraction and means of the associated properties for up to 
two cloud layers. The overlapping clouds illustrated in Fig. 15 
are interpreted as a single cloud layer and assigned to either 
the low or high layer depending on the thickness of the upper 
layer. Values for Zt, Zb, and ΔZ are not included, but can be 
estimated from pt and pb, which are part of the SSF 
complement. The content of the SSF and other CERES 
products is described in detail by [58].  

To account for the no-retrieval pixels within a footprint, the 
SSF convolution assigns the mean cloud properties from 
cloudy pixels in the footprint with retrieved values to the no-
retrieval pixels, if more than 1/9 of pixels in the footprint have 
valid cloud retrievals. Otherwise, only the valid cloudy pixels 
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Fig. 15. Illustration of CERES SSF constructed for a scene containing two 
cloud layers and some clear imager pixels. 

are used and the no-retrieval pixels are not considered as part 
of the total number of pixels in the footprint. Cloud properties 
could not be retrieved for 5.6% of pixels classified as cloudy 
during the daytime, 4.9 and 6.4% for Terra and Aqua, 
respectively. At night, only 1.4% of the cloudy pixels are 
inconsistent with the parameterizations. No-retrieval pixels 
occur most often in polar regions over snow-covered surfaces 
or at the edges of bright deserts. In the former instance, the 
SINT is unable to find a match, probably because of 
uncertainties in the clear-sky reflectance fields. In the latter 
case, the pixels detected as clouds may actually be heavy 
concentrations of aerosols that are misclassified as clouds.  

Imager pixel-level results are retained for image granules 
containing data that correspond to a selected number of 
locations around the globe. These granules are used for visual 
assessment and for comparison to independent validation 
datasets obtained from several research facilities around the 
world, e.g., [52]. The pixel-level results are also used to 
compute various statistics for quality control purposes. The 
statistics include monthly, seasonal, and longer term averages 
of the various properties. (The quality control products are 
available at http://lposun.larc.nasa.gov/~cwg/.)  

IV. CONCLUDING REMARKS 
This paper documents the CERES Ed2 cloud property 

retrieval algorithms, which have been applied to both Terra 
and Aqua MODIS data through December 2007 and to 
TRMM VIRS data through July 2001. The Ed2 processing 
will continue through 2010. Thereafter, CERES Edition 4 
processing will be used. The Ed2 algorithms, based on 

radiatively consistent cloud effective temperatures and optical 
depths, utilize a variety of empirical methods to crudely 
characterize the cloud vertical structure. A more refined 
approach is being developed for CERES Edition 4 that will 
have new parameterizations and explicit retrievals of some 
overlapping cloud systems. Since the techniques described 
herein primarily rely on the few channels that are common to 
most modern meteorological satellite imagers, they can be 
applied to analyze the radiance data and obtain cloud 
properties for many of those satellites, e.g., [57].   

Examples of the instantaneous results were shown to 
illustrate the techniques. The companion paper [17] provides 
examples of the cloud property averages derived from the 
quality control products. Known systemic problems (e.g., 
ozone transmittance) have been identified here and will be 
corrected in CERES Edition 4. Further discussion of the 
uncertainties and validation of the Ed2 results is also provided 
by [17] along with comparisons of the results to those from 
other sources. Alone, the available Ed2 data should be quite 
valuable for studying cloud variability. The combined CERES 
clouds and flux products (e.g., SSF) are unique and are already 
helping to improve our understanding of the relationships 
between clouds and the radiation budget.  

APPENDIX A 
 Visible reflectance parameterization 

A VIS reflectance parameterization was developed to 
improve the accuracy of the estimated TOA reflectances for 
clouds over both dark and bright surfaces. This 
parameterization is based on the adding-doubling (AD) 
method and replaces terms in the AD equations using values 
in the LUTs developed in [30] for the diffuse cloud albedo 
αcd(τ, r), cloud albedo αc(τ, r, µo), and the cloud reflectance 
ρ(τ, r, µo, µ, φ), where τ and r are the cloud visible optical 
depth and effective particle size, respectively. The relative 
azimuth angle is represented by φ. The parameterization also 
uses the LUTs of atmospheric reflectance ρR(τR, µo, µ, φ), 
albedo αR(τR,µo), and diffuse albedo αRd(τdR,µo) due to 
Rayleigh scattering [32]. The parameterization assumes the 
atmosphere is divided into three layers above a surface. The 
top layer, designated layer 1, and layer 3 are Rayleigh 
scattering layers, while layer 2 is the cloud layer.  

The reflectance for two adjacent layers is computed using 
the adding equations. The combined reflectance for the top 
Rayleigh layer and the cloud layer is  

 
R12 = ρR1 + αc‘ D1(1 - αRd1) + tR1(µ) [tR1(µo) ρc + S1]    

                     (A1) 
 
where  
αc’ = αc tR1(µo) + [1 - tR1(µo)] αcd,        (A2a) 
 D1 = T1 (1 +S1),              (A2b) 
 S1 = αRd1 αcd / (1 - αRd1 αcd),         (A2c) 
 T1 = 1 - tR1(µo) - αR1,            (A2d) 
 µ, µo = cosθ, cosθo,             (A2e) 
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tR is the direct Rayleigh transmission as defined in [32], and 
the numeric indices refer to a layer or combination of layers. 
The downward transmittance of the two layers is  

 
T12 = D1 [T2 + tc(µ)] + T2 tR1(µo),        (A3) 
 

where 
T2 = 1 - αc’ - tc(µo)             (A4) 

and tc is the direct transmittance of the cloud [32]. 
The combined reflectance for the three layers is  
 
R123 = R12+ αRd2 D2 T12* +(ρR2 tc(µo) tR1(µo)  
     + S2)tc(µ) tR1(µ),           (A5) 
 

where  
D2 = T12 (1 +S2),              (A6a) 
S2 =Q2 / (1 - Q2),              (A6b) 
Q2 = αRd2 R12’,                (A6c) 
R12’ = αR1 + (1 - αRd1)D1 αcd + tR1(µ)[αcd tR1(µo) + S1)   

                     (A6d) 
T12* = U1* (1 - αRd1),            (A6e) 

and 
U1* = (1 - αcd) (1 + S1).           (A6f) 
The downward transmittance for the three layers is  
 
T123 = D2 [T3 + tc(µ)] + T2 tR1(µo),       (A7) 
 

where  
 
T3 = 1 - αRd2 - tR2(µo).            (A8) 
 
The combined atmosphere and surface reflectance is  
 
Ras = R123 + αsdT123* D3 + t123(µ)[ρs t123(µo) + S3],   (A9) 
 

where αsd and ρs are the diffuse surface albedo and surface 
bidirectional reflectance, respectively,  
 

t123(µ) = tR1(µ) tc(µ) tR3(µ) ,        (A10a) 
t123(µo) = tR1(µo) tc(µo) tR3(µo),        (A10b) 
D3 = T123 (1 + S3),            (A10c) 
S3 = Q3 / (1 - Q3),             (A10d) 
Q3 = αsd R123’,              (A10e) 
T123* = T12* U2*,             (A10f) 
U2* = (1 + S2*) (1 - αRd2),          (A10g) 
S2* = R12* αRd2 / (1 - R12* αRd2),       (A10h) 
R12* = αcd + U1* αRd1 (1 - αcd),       (A10i) 
 

and 
 
R123’ = R12’ + αRd2D2T12*  
           +  [S2 + αR2tc(µo)tR1(µo)]tR1(µ)tc(µ).    (A10j) 
  
Values for αsd and ρs are estimated from the input clear-sky 

diffuse albedo αcsd [31] and the observed clear-sky reflectance, 

ρcs. 
 
αsd = 1.149 αcsd - 0.0333.          (A11) 
 
ρs = ρs’ - D αsd / exp(-τR13/µo),         (A12) 
 

where  
 

ρs’ = [ρcs / exp(-τgas (1/µ + 1/µo)) - ρR13] / (1 - αRd13),    
                    (A13a) 
D = (1 + S)(1- αR13 - exp(-τR13/µo)  
        + S exp(-τR13/µo),            (A13b) 
S = αsd αRd13 / (1 - αsd αRd13),        (A13c) 
 

and τgas is the absorption optical depth for the gaseous 
absorbers, such as ozone and water vapor, for the particular 
visible channel being used. This formulation does not 
explicitly account for any aerosols, so that the surface albedo 
and reflectance are actually more representative of the surface 
and aerosols combined. 

Equation (A9) was evaluated by comparing the values of 
Ras based on the LUTs with detailed AD computations for the 
same set of surface, cloud, and viewing and illumination 
conditions. These conditions are comprised of a total of 12 
surface albedos ranging from 4 to 90%, 12 cloud optical 
depths between 0.5 and 128, 8 values of θ from 0.0° to 72.5°, 
10 values of θo from 0.0°to 81.4°, and 15 values of φ. Two 
water droplet clouds with effective droplet radius re = 6 and 16 
µm were used at cloud pressures pc = 500 and 900 hPa. Two 
ice cloud models with effective ice crystal diameter De = 24 
and 123 µm were used at pc = 200 and 600 hPa. To minimize 
the error in the parameterization, the residual differences 
ΔR (r, τ, pc, αsd) between the results from the AD calculations 
and (A9) were fitted to the following polynomial:  

 

ΔR = ao + 

€ 

a iµ o
i

i=1

3
∑ + biµ

i + ciΘ
i

i=1

6
∑

i=1

3
∑ ,      (A14) 

where Θ is the scattering angle in radians. The TOA 
reflectance for this parameterization, then, is  
 

RTOA = (Ras + ΔR) exp(-τgas(1/µ + 1/µo)).    (A15) 
 

The exponential term accounts for gaseous absorption above 
the cloud and varies with the altitude of the cloud. 

When used for retrievals, the values of ΔR are computed for 
the specified values of αsd, pc, and r by linear interpolation and 
extrapolation between the values used to create the 
coefficients for (A14). Equation (A15) was tested for a wider 
range of various cloud models, surface albedos, and cloud 
pressures. The resulting relative differences between (A15) 
and the AD calculations for those cases plus the original cases 
used in the formulation are summarized in Table A.I under the 
heading, “new parameterization.” Results from the old 
parameterization [32] are also shown to demonstrate the 
increase in accuracy and precision over the full range of  
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TABLE A.I 
RELATIVE DIFFERENCES IN TOA REFLECTANCE BETWEEN PARAMETERIZATION 

AND AD CALCULATIONS. 

asd (%) new parameterization old parameterization 

4-10 -0.01 + 0.53 % -0.08 + 5.1 % 
10 -50 -0.01 + 0.67 % -0.14 + 7.0 % 

50-90 0.03 + 1.04 % -4.3 + 12.4 % 

 
surface albedos. The largest instantaneous errors occur for 
extreme values of θ, while the largest average errors for 
agiven parameter occur for τ < 0.1. For example, the greatest 
average difference for a given φ in the low albedo range is 
0.9% for τ = 0.5 at φ = 180°. Thus, if the AD TOA reflectance 
ρTOA is 6% at φ = 180°, the average value from (A15) is 6.1%. 
Overall, the differences are comparable to those between a 
high-resolution AD model and a discrete ordinates radiative 
transfer model (Y. Hu, personal communication 2001). 

APPENDIX B 
Partial list of symbols and abbreviations 
 
AD – adding-doubling 
AVHRR – Advanced Very High Resolution Radiometer 
CERES – Clouds and the Earth’s Radiant Energy System 
CKD – correlated k-distribution 
CPRS – Cloud Property Retrieval System 
ECMWF – European Centre for Medium-range Weather   
     Forecasting 
Ed1, Ed2 – CERES Edition 1 and Edition 2 CPRS  
GEOS - Global Modeling Assimilation Office Global Earth 
Observing System  
IR – infrared (10.8 µm) 
ISCCP – International Satellite Cloud Climatology Project 
IWP – ice water path 
LUT – lookup table 
LBTM - Layer Bispectral Threshold Method  
LWP – liquid water path 
MAST – MODIS Atmosphere Science Team 
MOA – Meteorology, Ozone, and Aerosol 
MODIS – MODerate-resolution Imaging Spectrometer 
NIR – near infrared (1.6 or 2.1 µm) 
NWA – numerical weather analysis 
PATMOS-x – Pathfinder Atmospheres Extended 
RGB – red, green, blue 
SINT – Shortwave-infrared Infrared Near-infrared Technique 
SIST – Shortwave-infrared Infrared Split-window Technique 
SAZ – solar zenith angle 
SIR – shortwave infrared (~3.8 µm) 
SSF – Single Scanner Footprint 
SW – split window (~12.0 µm) 
TOA – top of atmosphere 
TRMM – Tropical Rainfall Measuring Mission 
TWP – total water path 
UAH – University of Alabama, Huntsville 
VIRS – Visible InfraRed Scanner 
VIS – visible (~0.65 µm) 
VISST - Visible Infrared Shortwave-infrared Split-window 
Technique 

VZA – viewing zenith angle 
 
A2c, A2cd – cloud beam, diffuse NIR absorptance 
B – Planck function 
BTD –brightness temperature difference 
De – ice crystal effective diameter 
do - normalized Earth-sun distance 
Eo - solar constant 
e – error in predicted BTD 
i, j – spectral channel, layer index 
K – surface type 
k – emittance model index 
kmin – emittance model yielding minimum error 
LD, LU  – cumulative downwelling, upwelling radiance 
PW – precipitable water 
pb, pc, pt – cloud base, effective, top pressure 
Q – extinction efficiency 
Ras, RTOA – parameterization, corrected model TOA VIS   
     reflectance 
r, re – effective particle size, water droplet effective radius 
T, Tskin, Tp - temperature, surface skin, tropopause temperature 
Tb, Tc, Tt – cloud base, effective, top temperature 
T' – interim model effective temperature for iteration for one τ 
    and r 
Tnew - effective temperature after a completed iteration 
To – sea surface or 24-h running land surface air temperature 
T3min’, T3max’, - minimum, maximum interim SIR brightness  
      temperatures for a given model 
tD, tU – cumulative downwelling, upwelling transmittance 
tW1, tO3 – layer water vapor, column ozone VIS transmittance 
uw, u – layer water vapor, column ozone concentration 
Z, zo – altitude, surface elevation 
Zb, Zc, Zt – cloud base, effective, top height 
 
D – intermediate layer downwelling transmittance in AD    
  model 
Q - intermediate layer albedo-reflectance product in AD model 
R - layer upwelling reflectance in AD model 
S - intermediate layer albedo ratio in AD model 
T, T* - layer downwelling, upwelling transmittance in AD 
    model 
U* - intermediate layer upwelling transmittance in AD model 
 
αc, αcd – cloud beam, diffuse albedo 
αs2, αcs1 – NIR surface, VIS clear-sky albedo 
αsd2, αcsd1 - diffuse NIR surface, diffuse VIS clear-sky albedo 
Γ – lapse rate 
ΔR – VIS parameterization residual reflectance 
ΔT34 - BTD threshold for optically thick cloud 
ΔZ - cloud thickness 
δsN , δcs1 – NIR surface, VIS clear-sky normalized directional 
    reflectance  
ε,  εt, εs , – cloud effective, cloud top, surface emissivity 
εa, εad - cloud beam, diffuse emissivity without scattering 
θ, θo - viewing, solar zenith angle 
Θ - scattering angle 
µ, µo - cos(θ), cos(θo) 
χs2, χ1 – NIR surface, VIS clear-sky normalized BRDF 



TGRS-2009-00903.R1 
 

23 

ρc, ρR – cloud, Rayleigh reflectance 
ρs, ρcs1 – surface, VIS clear-sky reflectance 
τa, τ - infrared absorption, VIS cloud optical depth 
τgas - VIS absorbing gas optical depth above cloud layer 
τR - layer Rayleigh scattering optical depth 
τ2a1, τ2a2 - NIR absorption optical depth above, below cloud 
τ ij – gaseous absorption optical depth for channel i, layer j 
φ - relative azimuth angle 
ϖo - single scattering albedo 
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